Polytope of Type {2,2,5,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,5,10}*1280b
if this polytope has a name.
Group : SmallGroup(1280,1116461)
Rank : 5
Schlafli Type : {2,2,5,10}
Number of vertices, edges, etc : 2, 2, 16, 80, 32
Order of s0s1s2s3s4 : 4
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,5,5}*640
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (  5,165)(  6,175)(  7,178)(  8,172)(  9,169)( 10,179)( 11,174)( 12,168)
( 13,177)( 14,171)( 15,166)( 16,176)( 17,173)( 18,167)( 19,170)( 20,180)
( 21,229)( 22,239)( 23,242)( 24,236)( 25,233)( 26,243)( 27,238)( 28,232)
( 29,241)( 30,235)( 31,230)( 32,240)( 33,237)( 34,231)( 35,234)( 36,244)
( 37,213)( 38,223)( 39,226)( 40,220)( 41,217)( 42,227)( 43,222)( 44,216)
( 45,225)( 46,219)( 47,214)( 48,224)( 49,221)( 50,215)( 51,218)( 52,228)
( 53,197)( 54,207)( 55,210)( 56,204)( 57,201)( 58,211)( 59,206)( 60,200)
( 61,209)( 62,203)( 63,198)( 64,208)( 65,205)( 66,199)( 67,202)( 68,212)
( 69,181)( 70,191)( 71,194)( 72,188)( 73,185)( 74,195)( 75,190)( 76,184)
( 77,193)( 78,187)( 79,182)( 80,192)( 81,189)( 82,183)( 83,186)( 84,196)
( 85,245)( 86,255)( 87,258)( 88,252)( 89,249)( 90,259)( 91,254)( 92,248)
( 93,257)( 94,251)( 95,246)( 96,256)( 97,253)( 98,247)( 99,250)(100,260)
(101,309)(102,319)(103,322)(104,316)(105,313)(106,323)(107,318)(108,312)
(109,321)(110,315)(111,310)(112,320)(113,317)(114,311)(115,314)(116,324)
(117,293)(118,303)(119,306)(120,300)(121,297)(122,307)(123,302)(124,296)
(125,305)(126,299)(127,294)(128,304)(129,301)(130,295)(131,298)(132,308)
(133,277)(134,287)(135,290)(136,284)(137,281)(138,291)(139,286)(140,280)
(141,289)(142,283)(143,278)(144,288)(145,285)(146,279)(147,282)(148,292)
(149,261)(150,271)(151,274)(152,268)(153,265)(154,275)(155,270)(156,264)
(157,273)(158,267)(159,262)(160,272)(161,269)(162,263)(163,266)(164,276);;
s3 := (  5,181)(  6,196)(  7,183)(  8,194)(  9,187)( 10,190)( 11,185)( 12,192)
( 13,191)( 14,186)( 15,189)( 16,188)( 17,193)( 18,184)( 19,195)( 20,182)
( 21,165)( 22,180)( 23,167)( 24,178)( 25,171)( 26,174)( 27,169)( 28,176)
( 29,175)( 30,170)( 31,173)( 32,172)( 33,177)( 34,168)( 35,179)( 36,166)
( 37,229)( 38,244)( 39,231)( 40,242)( 41,235)( 42,238)( 43,233)( 44,240)
( 45,239)( 46,234)( 47,237)( 48,236)( 49,241)( 50,232)( 51,243)( 52,230)
( 53,213)( 54,228)( 55,215)( 56,226)( 57,219)( 58,222)( 59,217)( 60,224)
( 61,223)( 62,218)( 63,221)( 64,220)( 65,225)( 66,216)( 67,227)( 68,214)
( 69,197)( 70,212)( 71,199)( 72,210)( 73,203)( 74,206)( 75,201)( 76,208)
( 77,207)( 78,202)( 79,205)( 80,204)( 81,209)( 82,200)( 83,211)( 84,198)
( 85,261)( 86,276)( 87,263)( 88,274)( 89,267)( 90,270)( 91,265)( 92,272)
( 93,271)( 94,266)( 95,269)( 96,268)( 97,273)( 98,264)( 99,275)(100,262)
(101,245)(102,260)(103,247)(104,258)(105,251)(106,254)(107,249)(108,256)
(109,255)(110,250)(111,253)(112,252)(113,257)(114,248)(115,259)(116,246)
(117,309)(118,324)(119,311)(120,322)(121,315)(122,318)(123,313)(124,320)
(125,319)(126,314)(127,317)(128,316)(129,321)(130,312)(131,323)(132,310)
(133,293)(134,308)(135,295)(136,306)(137,299)(138,302)(139,297)(140,304)
(141,303)(142,298)(143,301)(144,300)(145,305)(146,296)(147,307)(148,294)
(149,277)(150,292)(151,279)(152,290)(153,283)(154,286)(155,281)(156,288)
(157,287)(158,282)(159,285)(160,284)(161,289)(162,280)(163,291)(164,278);;
s4 := (  5,249)(  6,259)(  7,254)(  8,248)(  9,245)( 10,255)( 11,258)( 12,252)
( 13,253)( 14,247)( 15,250)( 16,260)( 17,257)( 18,251)( 19,246)( 20,256)
( 21,313)( 22,323)( 23,318)( 24,312)( 25,309)( 26,319)( 27,322)( 28,316)
( 29,317)( 30,311)( 31,314)( 32,324)( 33,321)( 34,315)( 35,310)( 36,320)
( 37,297)( 38,307)( 39,302)( 40,296)( 41,293)( 42,303)( 43,306)( 44,300)
( 45,301)( 46,295)( 47,298)( 48,308)( 49,305)( 50,299)( 51,294)( 52,304)
( 53,281)( 54,291)( 55,286)( 56,280)( 57,277)( 58,287)( 59,290)( 60,284)
( 61,285)( 62,279)( 63,282)( 64,292)( 65,289)( 66,283)( 67,278)( 68,288)
( 69,265)( 70,275)( 71,270)( 72,264)( 73,261)( 74,271)( 75,274)( 76,268)
( 77,269)( 78,263)( 79,266)( 80,276)( 81,273)( 82,267)( 83,262)( 84,272)
( 85,169)( 86,179)( 87,174)( 88,168)( 89,165)( 90,175)( 91,178)( 92,172)
( 93,173)( 94,167)( 95,170)( 96,180)( 97,177)( 98,171)( 99,166)(100,176)
(101,233)(102,243)(103,238)(104,232)(105,229)(106,239)(107,242)(108,236)
(109,237)(110,231)(111,234)(112,244)(113,241)(114,235)(115,230)(116,240)
(117,217)(118,227)(119,222)(120,216)(121,213)(122,223)(123,226)(124,220)
(125,221)(126,215)(127,218)(128,228)(129,225)(130,219)(131,214)(132,224)
(133,201)(134,211)(135,206)(136,200)(137,197)(138,207)(139,210)(140,204)
(141,205)(142,199)(143,202)(144,212)(145,209)(146,203)(147,198)(148,208)
(149,185)(150,195)(151,190)(152,184)(153,181)(154,191)(155,194)(156,188)
(157,189)(158,183)(159,186)(160,196)(161,193)(162,187)(163,182)(164,192);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(324)!(1,2);
s1 := Sym(324)!(3,4);
s2 := Sym(324)!(  5,165)(  6,175)(  7,178)(  8,172)(  9,169)( 10,179)( 11,174)
( 12,168)( 13,177)( 14,171)( 15,166)( 16,176)( 17,173)( 18,167)( 19,170)
( 20,180)( 21,229)( 22,239)( 23,242)( 24,236)( 25,233)( 26,243)( 27,238)
( 28,232)( 29,241)( 30,235)( 31,230)( 32,240)( 33,237)( 34,231)( 35,234)
( 36,244)( 37,213)( 38,223)( 39,226)( 40,220)( 41,217)( 42,227)( 43,222)
( 44,216)( 45,225)( 46,219)( 47,214)( 48,224)( 49,221)( 50,215)( 51,218)
( 52,228)( 53,197)( 54,207)( 55,210)( 56,204)( 57,201)( 58,211)( 59,206)
( 60,200)( 61,209)( 62,203)( 63,198)( 64,208)( 65,205)( 66,199)( 67,202)
( 68,212)( 69,181)( 70,191)( 71,194)( 72,188)( 73,185)( 74,195)( 75,190)
( 76,184)( 77,193)( 78,187)( 79,182)( 80,192)( 81,189)( 82,183)( 83,186)
( 84,196)( 85,245)( 86,255)( 87,258)( 88,252)( 89,249)( 90,259)( 91,254)
( 92,248)( 93,257)( 94,251)( 95,246)( 96,256)( 97,253)( 98,247)( 99,250)
(100,260)(101,309)(102,319)(103,322)(104,316)(105,313)(106,323)(107,318)
(108,312)(109,321)(110,315)(111,310)(112,320)(113,317)(114,311)(115,314)
(116,324)(117,293)(118,303)(119,306)(120,300)(121,297)(122,307)(123,302)
(124,296)(125,305)(126,299)(127,294)(128,304)(129,301)(130,295)(131,298)
(132,308)(133,277)(134,287)(135,290)(136,284)(137,281)(138,291)(139,286)
(140,280)(141,289)(142,283)(143,278)(144,288)(145,285)(146,279)(147,282)
(148,292)(149,261)(150,271)(151,274)(152,268)(153,265)(154,275)(155,270)
(156,264)(157,273)(158,267)(159,262)(160,272)(161,269)(162,263)(163,266)
(164,276);
s3 := Sym(324)!(  5,181)(  6,196)(  7,183)(  8,194)(  9,187)( 10,190)( 11,185)
( 12,192)( 13,191)( 14,186)( 15,189)( 16,188)( 17,193)( 18,184)( 19,195)
( 20,182)( 21,165)( 22,180)( 23,167)( 24,178)( 25,171)( 26,174)( 27,169)
( 28,176)( 29,175)( 30,170)( 31,173)( 32,172)( 33,177)( 34,168)( 35,179)
( 36,166)( 37,229)( 38,244)( 39,231)( 40,242)( 41,235)( 42,238)( 43,233)
( 44,240)( 45,239)( 46,234)( 47,237)( 48,236)( 49,241)( 50,232)( 51,243)
( 52,230)( 53,213)( 54,228)( 55,215)( 56,226)( 57,219)( 58,222)( 59,217)
( 60,224)( 61,223)( 62,218)( 63,221)( 64,220)( 65,225)( 66,216)( 67,227)
( 68,214)( 69,197)( 70,212)( 71,199)( 72,210)( 73,203)( 74,206)( 75,201)
( 76,208)( 77,207)( 78,202)( 79,205)( 80,204)( 81,209)( 82,200)( 83,211)
( 84,198)( 85,261)( 86,276)( 87,263)( 88,274)( 89,267)( 90,270)( 91,265)
( 92,272)( 93,271)( 94,266)( 95,269)( 96,268)( 97,273)( 98,264)( 99,275)
(100,262)(101,245)(102,260)(103,247)(104,258)(105,251)(106,254)(107,249)
(108,256)(109,255)(110,250)(111,253)(112,252)(113,257)(114,248)(115,259)
(116,246)(117,309)(118,324)(119,311)(120,322)(121,315)(122,318)(123,313)
(124,320)(125,319)(126,314)(127,317)(128,316)(129,321)(130,312)(131,323)
(132,310)(133,293)(134,308)(135,295)(136,306)(137,299)(138,302)(139,297)
(140,304)(141,303)(142,298)(143,301)(144,300)(145,305)(146,296)(147,307)
(148,294)(149,277)(150,292)(151,279)(152,290)(153,283)(154,286)(155,281)
(156,288)(157,287)(158,282)(159,285)(160,284)(161,289)(162,280)(163,291)
(164,278);
s4 := Sym(324)!(  5,249)(  6,259)(  7,254)(  8,248)(  9,245)( 10,255)( 11,258)
( 12,252)( 13,253)( 14,247)( 15,250)( 16,260)( 17,257)( 18,251)( 19,246)
( 20,256)( 21,313)( 22,323)( 23,318)( 24,312)( 25,309)( 26,319)( 27,322)
( 28,316)( 29,317)( 30,311)( 31,314)( 32,324)( 33,321)( 34,315)( 35,310)
( 36,320)( 37,297)( 38,307)( 39,302)( 40,296)( 41,293)( 42,303)( 43,306)
( 44,300)( 45,301)( 46,295)( 47,298)( 48,308)( 49,305)( 50,299)( 51,294)
( 52,304)( 53,281)( 54,291)( 55,286)( 56,280)( 57,277)( 58,287)( 59,290)
( 60,284)( 61,285)( 62,279)( 63,282)( 64,292)( 65,289)( 66,283)( 67,278)
( 68,288)( 69,265)( 70,275)( 71,270)( 72,264)( 73,261)( 74,271)( 75,274)
( 76,268)( 77,269)( 78,263)( 79,266)( 80,276)( 81,273)( 82,267)( 83,262)
( 84,272)( 85,169)( 86,179)( 87,174)( 88,168)( 89,165)( 90,175)( 91,178)
( 92,172)( 93,173)( 94,167)( 95,170)( 96,180)( 97,177)( 98,171)( 99,166)
(100,176)(101,233)(102,243)(103,238)(104,232)(105,229)(106,239)(107,242)
(108,236)(109,237)(110,231)(111,234)(112,244)(113,241)(114,235)(115,230)
(116,240)(117,217)(118,227)(119,222)(120,216)(121,213)(122,223)(123,226)
(124,220)(125,221)(126,215)(127,218)(128,228)(129,225)(130,219)(131,214)
(132,224)(133,201)(134,211)(135,206)(136,200)(137,197)(138,207)(139,210)
(140,204)(141,205)(142,199)(143,202)(144,212)(145,209)(146,203)(147,198)
(148,208)(149,185)(150,195)(151,190)(152,184)(153,181)(154,191)(155,194)
(156,188)(157,189)(158,183)(159,186)(160,196)(161,193)(162,187)(163,182)
(164,192);
poly := sub<Sym(324)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 >; 
 

to this polytope