include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,40,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,40,8}*1280b
if this polytope has a name.
Group : SmallGroup(1280,145174)
Rank : 4
Schlafli Type : {2,40,8}
Number of vertices, edges, etc : 2, 40, 160, 8
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,40,4}*640a, {2,20,8}*640b
4-fold quotients : {2,20,4}*320, {2,40,2}*320
5-fold quotients : {2,8,8}*256c
8-fold quotients : {2,20,2}*160, {2,10,4}*160
10-fold quotients : {2,8,4}*128a, {2,4,8}*128b
16-fold quotients : {2,10,2}*80
20-fold quotients : {2,4,4}*64, {2,8,2}*64
32-fold quotients : {2,5,2}*40
40-fold quotients : {2,2,4}*32, {2,4,2}*32
80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,163)( 4,167)( 5,166)( 6,165)( 7,164)( 8,168)( 9,172)( 10,171)
( 11,170)( 12,169)( 13,173)( 14,177)( 15,176)( 16,175)( 17,174)( 18,178)
( 19,182)( 20,181)( 21,180)( 22,179)( 23,188)( 24,192)( 25,191)( 26,190)
( 27,189)( 28,183)( 29,187)( 30,186)( 31,185)( 32,184)( 33,198)( 34,202)
( 35,201)( 36,200)( 37,199)( 38,193)( 39,197)( 40,196)( 41,195)( 42,194)
( 43,213)( 44,217)( 45,216)( 46,215)( 47,214)( 48,218)( 49,222)( 50,221)
( 51,220)( 52,219)( 53,203)( 54,207)( 55,206)( 56,205)( 57,204)( 58,208)
( 59,212)( 60,211)( 61,210)( 62,209)( 63,238)( 64,242)( 65,241)( 66,240)
( 67,239)( 68,233)( 69,237)( 70,236)( 71,235)( 72,234)( 73,228)( 74,232)
( 75,231)( 76,230)( 77,229)( 78,223)( 79,227)( 80,226)( 81,225)( 82,224)
( 83,243)( 84,247)( 85,246)( 86,245)( 87,244)( 88,248)( 89,252)( 90,251)
( 91,250)( 92,249)( 93,253)( 94,257)( 95,256)( 96,255)( 97,254)( 98,258)
( 99,262)(100,261)(101,260)(102,259)(103,268)(104,272)(105,271)(106,270)
(107,269)(108,263)(109,267)(110,266)(111,265)(112,264)(113,278)(114,282)
(115,281)(116,280)(117,279)(118,273)(119,277)(120,276)(121,275)(122,274)
(123,293)(124,297)(125,296)(126,295)(127,294)(128,298)(129,302)(130,301)
(131,300)(132,299)(133,283)(134,287)(135,286)(136,285)(137,284)(138,288)
(139,292)(140,291)(141,290)(142,289)(143,318)(144,322)(145,321)(146,320)
(147,319)(148,313)(149,317)(150,316)(151,315)(152,314)(153,308)(154,312)
(155,311)(156,310)(157,309)(158,303)(159,307)(160,306)(161,305)(162,304);;
s2 := ( 3, 4)( 5, 7)( 8, 9)( 10, 12)( 13, 14)( 15, 17)( 18, 19)( 20, 22)
( 23, 29)( 24, 28)( 25, 32)( 26, 31)( 27, 30)( 33, 39)( 34, 38)( 35, 42)
( 36, 41)( 37, 40)( 43, 54)( 44, 53)( 45, 57)( 46, 56)( 47, 55)( 48, 59)
( 49, 58)( 50, 62)( 51, 61)( 52, 60)( 63, 79)( 64, 78)( 65, 82)( 66, 81)
( 67, 80)( 68, 74)( 69, 73)( 70, 77)( 71, 76)( 72, 75)( 83,104)( 84,103)
( 85,107)( 86,106)( 87,105)( 88,109)( 89,108)( 90,112)( 91,111)( 92,110)
( 93,114)( 94,113)( 95,117)( 96,116)( 97,115)( 98,119)( 99,118)(100,122)
(101,121)(102,120)(123,154)(124,153)(125,157)(126,156)(127,155)(128,159)
(129,158)(130,162)(131,161)(132,160)(133,144)(134,143)(135,147)(136,146)
(137,145)(138,149)(139,148)(140,152)(141,151)(142,150)(163,204)(164,203)
(165,207)(166,206)(167,205)(168,209)(169,208)(170,212)(171,211)(172,210)
(173,214)(174,213)(175,217)(176,216)(177,215)(178,219)(179,218)(180,222)
(181,221)(182,220)(183,229)(184,228)(185,232)(186,231)(187,230)(188,224)
(189,223)(190,227)(191,226)(192,225)(193,239)(194,238)(195,242)(196,241)
(197,240)(198,234)(199,233)(200,237)(201,236)(202,235)(243,309)(244,308)
(245,312)(246,311)(247,310)(248,304)(249,303)(250,307)(251,306)(252,305)
(253,319)(254,318)(255,322)(256,321)(257,320)(258,314)(259,313)(260,317)
(261,316)(262,315)(263,289)(264,288)(265,292)(266,291)(267,290)(268,284)
(269,283)(270,287)(271,286)(272,285)(273,299)(274,298)(275,302)(276,301)
(277,300)(278,294)(279,293)(280,297)(281,296)(282,295);;
s3 := ( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)( 9, 89)( 10, 90)
( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)( 18, 98)
( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)( 26,111)
( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)( 34,119)
( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)( 42,117)
( 43,128)( 44,129)( 45,130)( 46,131)( 47,132)( 48,123)( 49,124)( 50,125)
( 51,126)( 52,127)( 53,138)( 54,139)( 55,140)( 56,141)( 57,142)( 58,133)
( 59,134)( 60,135)( 61,136)( 62,137)( 63,143)( 64,144)( 65,145)( 66,146)
( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)( 72,152)( 73,153)( 74,154)
( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)( 80,160)( 81,161)( 82,162)
(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)(170,250)
(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)(178,258)
(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)(186,271)
(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)(194,279)
(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)(202,277)
(203,288)(204,289)(205,290)(206,291)(207,292)(208,283)(209,284)(210,285)
(211,286)(212,287)(213,298)(214,299)(215,300)(216,301)(217,302)(218,293)
(219,294)(220,295)(221,296)(222,297)(223,303)(224,304)(225,305)(226,306)
(227,307)(228,308)(229,309)(230,310)(231,311)(232,312)(233,313)(234,314)
(235,315)(236,316)(237,317)(238,318)(239,319)(240,320)(241,321)(242,322);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!( 3,163)( 4,167)( 5,166)( 6,165)( 7,164)( 8,168)( 9,172)
( 10,171)( 11,170)( 12,169)( 13,173)( 14,177)( 15,176)( 16,175)( 17,174)
( 18,178)( 19,182)( 20,181)( 21,180)( 22,179)( 23,188)( 24,192)( 25,191)
( 26,190)( 27,189)( 28,183)( 29,187)( 30,186)( 31,185)( 32,184)( 33,198)
( 34,202)( 35,201)( 36,200)( 37,199)( 38,193)( 39,197)( 40,196)( 41,195)
( 42,194)( 43,213)( 44,217)( 45,216)( 46,215)( 47,214)( 48,218)( 49,222)
( 50,221)( 51,220)( 52,219)( 53,203)( 54,207)( 55,206)( 56,205)( 57,204)
( 58,208)( 59,212)( 60,211)( 61,210)( 62,209)( 63,238)( 64,242)( 65,241)
( 66,240)( 67,239)( 68,233)( 69,237)( 70,236)( 71,235)( 72,234)( 73,228)
( 74,232)( 75,231)( 76,230)( 77,229)( 78,223)( 79,227)( 80,226)( 81,225)
( 82,224)( 83,243)( 84,247)( 85,246)( 86,245)( 87,244)( 88,248)( 89,252)
( 90,251)( 91,250)( 92,249)( 93,253)( 94,257)( 95,256)( 96,255)( 97,254)
( 98,258)( 99,262)(100,261)(101,260)(102,259)(103,268)(104,272)(105,271)
(106,270)(107,269)(108,263)(109,267)(110,266)(111,265)(112,264)(113,278)
(114,282)(115,281)(116,280)(117,279)(118,273)(119,277)(120,276)(121,275)
(122,274)(123,293)(124,297)(125,296)(126,295)(127,294)(128,298)(129,302)
(130,301)(131,300)(132,299)(133,283)(134,287)(135,286)(136,285)(137,284)
(138,288)(139,292)(140,291)(141,290)(142,289)(143,318)(144,322)(145,321)
(146,320)(147,319)(148,313)(149,317)(150,316)(151,315)(152,314)(153,308)
(154,312)(155,311)(156,310)(157,309)(158,303)(159,307)(160,306)(161,305)
(162,304);
s2 := Sym(322)!( 3, 4)( 5, 7)( 8, 9)( 10, 12)( 13, 14)( 15, 17)( 18, 19)
( 20, 22)( 23, 29)( 24, 28)( 25, 32)( 26, 31)( 27, 30)( 33, 39)( 34, 38)
( 35, 42)( 36, 41)( 37, 40)( 43, 54)( 44, 53)( 45, 57)( 46, 56)( 47, 55)
( 48, 59)( 49, 58)( 50, 62)( 51, 61)( 52, 60)( 63, 79)( 64, 78)( 65, 82)
( 66, 81)( 67, 80)( 68, 74)( 69, 73)( 70, 77)( 71, 76)( 72, 75)( 83,104)
( 84,103)( 85,107)( 86,106)( 87,105)( 88,109)( 89,108)( 90,112)( 91,111)
( 92,110)( 93,114)( 94,113)( 95,117)( 96,116)( 97,115)( 98,119)( 99,118)
(100,122)(101,121)(102,120)(123,154)(124,153)(125,157)(126,156)(127,155)
(128,159)(129,158)(130,162)(131,161)(132,160)(133,144)(134,143)(135,147)
(136,146)(137,145)(138,149)(139,148)(140,152)(141,151)(142,150)(163,204)
(164,203)(165,207)(166,206)(167,205)(168,209)(169,208)(170,212)(171,211)
(172,210)(173,214)(174,213)(175,217)(176,216)(177,215)(178,219)(179,218)
(180,222)(181,221)(182,220)(183,229)(184,228)(185,232)(186,231)(187,230)
(188,224)(189,223)(190,227)(191,226)(192,225)(193,239)(194,238)(195,242)
(196,241)(197,240)(198,234)(199,233)(200,237)(201,236)(202,235)(243,309)
(244,308)(245,312)(246,311)(247,310)(248,304)(249,303)(250,307)(251,306)
(252,305)(253,319)(254,318)(255,322)(256,321)(257,320)(258,314)(259,313)
(260,317)(261,316)(262,315)(263,289)(264,288)(265,292)(266,291)(267,290)
(268,284)(269,283)(270,287)(271,286)(272,285)(273,299)(274,298)(275,302)
(276,301)(277,300)(278,294)(279,293)(280,297)(281,296)(282,295);
s3 := Sym(322)!( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)( 9, 89)
( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)( 17, 97)
( 18, 98)( 19, 99)( 20,100)( 21,101)( 22,102)( 23,108)( 24,109)( 25,110)
( 26,111)( 27,112)( 28,103)( 29,104)( 30,105)( 31,106)( 32,107)( 33,118)
( 34,119)( 35,120)( 36,121)( 37,122)( 38,113)( 39,114)( 40,115)( 41,116)
( 42,117)( 43,128)( 44,129)( 45,130)( 46,131)( 47,132)( 48,123)( 49,124)
( 50,125)( 51,126)( 52,127)( 53,138)( 54,139)( 55,140)( 56,141)( 57,142)
( 58,133)( 59,134)( 60,135)( 61,136)( 62,137)( 63,143)( 64,144)( 65,145)
( 66,146)( 67,147)( 68,148)( 69,149)( 70,150)( 71,151)( 72,152)( 73,153)
( 74,154)( 75,155)( 76,156)( 77,157)( 78,158)( 79,159)( 80,160)( 81,161)
( 82,162)(163,243)(164,244)(165,245)(166,246)(167,247)(168,248)(169,249)
(170,250)(171,251)(172,252)(173,253)(174,254)(175,255)(176,256)(177,257)
(178,258)(179,259)(180,260)(181,261)(182,262)(183,268)(184,269)(185,270)
(186,271)(187,272)(188,263)(189,264)(190,265)(191,266)(192,267)(193,278)
(194,279)(195,280)(196,281)(197,282)(198,273)(199,274)(200,275)(201,276)
(202,277)(203,288)(204,289)(205,290)(206,291)(207,292)(208,283)(209,284)
(210,285)(211,286)(212,287)(213,298)(214,299)(215,300)(216,301)(217,302)
(218,293)(219,294)(220,295)(221,296)(222,297)(223,303)(224,304)(225,305)
(226,306)(227,307)(228,308)(229,309)(230,310)(231,311)(232,312)(233,313)
(234,314)(235,315)(236,316)(237,317)(238,318)(239,319)(240,320)(241,321)
(242,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope