include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,20,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,20,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,201150)
Rank : 4
Schlafli Type : {4,20,4}
Number of vertices, edges, etc : 8, 80, 80, 4
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,20,4}*640, {4,20,2}*640
4-fold quotients : {2,20,4}*320, {4,20,2}*320, {4,10,4}*320
5-fold quotients : {4,4,4}*256b
8-fold quotients : {2,20,2}*160, {2,10,4}*160, {4,10,2}*160
10-fold quotients : {4,4,4}*128, {4,4,2}*128
16-fold quotients : {2,10,2}*80
20-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
32-fold quotients : {2,5,2}*40
40-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)( 8, 48)
( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)( 24, 69)
( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)( 32, 77)
( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)( 40, 75)
( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)( 88,128)
( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)( 96,136)
( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)(104,149)
(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)
(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155);;
s1 := ( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)( 78, 79)
( 81,101)( 82,105)( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)
( 89,108)( 90,107)( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)
( 97,120)( 98,119)( 99,118)(100,117)(121,141)(122,145)(123,144)(124,143)
(125,142)(126,146)(127,150)(128,149)(129,148)(130,147)(131,151)(132,155)
(133,154)(134,153)(135,152)(136,156)(137,160)(138,159)(139,158)(140,157);;
s2 := ( 1, 83)( 2, 82)( 3, 81)( 4, 85)( 5, 84)( 6, 88)( 7, 87)( 8, 86)
( 9, 90)( 10, 89)( 11, 93)( 12, 92)( 13, 91)( 14, 95)( 15, 94)( 16, 98)
( 17, 97)( 18, 96)( 19,100)( 20, 99)( 21,103)( 22,102)( 23,101)( 24,105)
( 25,104)( 26,108)( 27,107)( 28,106)( 29,110)( 30,109)( 31,113)( 32,112)
( 33,111)( 34,115)( 35,114)( 36,118)( 37,117)( 38,116)( 39,120)( 40,119)
( 41,123)( 42,122)( 43,121)( 44,125)( 45,124)( 46,128)( 47,127)( 48,126)
( 49,130)( 50,129)( 51,133)( 52,132)( 53,131)( 54,135)( 55,134)( 56,138)
( 57,137)( 58,136)( 59,140)( 60,139)( 61,143)( 62,142)( 63,141)( 64,145)
( 65,144)( 66,148)( 67,147)( 68,146)( 69,150)( 70,149)( 71,153)( 72,152)
( 73,151)( 74,155)( 75,154)( 76,158)( 77,157)( 78,156)( 79,160)( 80,159);;
s3 := ( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)( 8, 48)
( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)( 24, 64)
( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)( 32, 72)
( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)( 40, 80)
( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)( 88,138)
( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)( 96,126)
( 97,127)( 98,128)( 99,129)(100,130)(101,151)(102,152)(103,153)(104,154)
(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)(112,142)
(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(160)!( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)
( 8, 48)( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 66)( 22, 67)( 23, 68)
( 24, 69)( 25, 70)( 26, 61)( 27, 62)( 28, 63)( 29, 64)( 30, 65)( 31, 76)
( 32, 77)( 33, 78)( 34, 79)( 35, 80)( 36, 71)( 37, 72)( 38, 73)( 39, 74)
( 40, 75)( 81,121)( 82,122)( 83,123)( 84,124)( 85,125)( 86,126)( 87,127)
( 88,128)( 89,129)( 90,130)( 91,131)( 92,132)( 93,133)( 94,134)( 95,135)
( 96,136)( 97,137)( 98,138)( 99,139)(100,140)(101,146)(102,147)(103,148)
(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)
(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)
(120,155);
s1 := Sym(160)!( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)
( 78, 79)( 81,101)( 82,105)( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)
( 88,109)( 89,108)( 90,107)( 91,111)( 92,115)( 93,114)( 94,113)( 95,112)
( 96,116)( 97,120)( 98,119)( 99,118)(100,117)(121,141)(122,145)(123,144)
(124,143)(125,142)(126,146)(127,150)(128,149)(129,148)(130,147)(131,151)
(132,155)(133,154)(134,153)(135,152)(136,156)(137,160)(138,159)(139,158)
(140,157);
s2 := Sym(160)!( 1, 83)( 2, 82)( 3, 81)( 4, 85)( 5, 84)( 6, 88)( 7, 87)
( 8, 86)( 9, 90)( 10, 89)( 11, 93)( 12, 92)( 13, 91)( 14, 95)( 15, 94)
( 16, 98)( 17, 97)( 18, 96)( 19,100)( 20, 99)( 21,103)( 22,102)( 23,101)
( 24,105)( 25,104)( 26,108)( 27,107)( 28,106)( 29,110)( 30,109)( 31,113)
( 32,112)( 33,111)( 34,115)( 35,114)( 36,118)( 37,117)( 38,116)( 39,120)
( 40,119)( 41,123)( 42,122)( 43,121)( 44,125)( 45,124)( 46,128)( 47,127)
( 48,126)( 49,130)( 50,129)( 51,133)( 52,132)( 53,131)( 54,135)( 55,134)
( 56,138)( 57,137)( 58,136)( 59,140)( 60,139)( 61,143)( 62,142)( 63,141)
( 64,145)( 65,144)( 66,148)( 67,147)( 68,146)( 69,150)( 70,149)( 71,153)
( 72,152)( 73,151)( 74,155)( 75,154)( 76,158)( 77,157)( 78,156)( 79,160)
( 80,159);
s3 := Sym(160)!( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)
( 8, 48)( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)
( 24, 64)( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)
( 32, 72)( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)
( 40, 80)( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)
( 88,138)( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)
( 96,126)( 97,127)( 98,128)( 99,129)(100,130)(101,151)(102,152)(103,153)
(104,154)(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)
(112,142)(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)
(120,150);
poly := sub<Sym(160)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope