include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,8,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8,20}*1280c
if this polytope has a name.
Group : SmallGroup(1280,201205)
Rank : 4
Schlafli Type : {4,8,20}
Number of vertices, edges, etc : 4, 16, 80, 20
Order of s0s1s2s3 : 40
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,20}*640, {2,8,20}*640b
4-fold quotients : {2,4,20}*320, {4,2,20}*320, {4,4,10}*320
5-fold quotients : {4,8,4}*256b
8-fold quotients : {2,2,20}*160, {2,4,10}*160, {4,2,10}*160
10-fold quotients : {4,4,4}*128, {2,8,4}*128b
16-fold quotients : {4,2,5}*80, {2,2,10}*80
20-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
32-fold quotients : {2,2,5}*40
40-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)( 8, 48)
( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)( 24, 64)
( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)( 32, 72)
( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)( 40, 80)
( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)( 88,138)
( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)( 96,126)
( 97,127)( 98,128)( 99,129)(100,130)(101,151)(102,152)(103,153)(104,154)
(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)(112,142)
(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)(120,150);;
s1 := ( 1, 81)( 2, 82)( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)( 8, 88)
( 9, 89)( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)( 16, 96)
( 17, 97)( 18, 98)( 19, 99)( 20,100)( 21,106)( 22,107)( 23,108)( 24,109)
( 25,110)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,116)( 32,117)
( 33,118)( 34,119)( 35,120)( 36,111)( 37,112)( 38,113)( 39,114)( 40,115)
( 41,121)( 42,122)( 43,123)( 44,124)( 45,125)( 46,126)( 47,127)( 48,128)
( 49,129)( 50,130)( 51,131)( 52,132)( 53,133)( 54,134)( 55,135)( 56,136)
( 57,137)( 58,138)( 59,139)( 60,140)( 61,146)( 62,147)( 63,148)( 64,149)
( 65,150)( 66,141)( 67,142)( 68,143)( 69,144)( 70,145)( 71,156)( 72,157)
( 73,158)( 74,159)( 75,160)( 76,151)( 77,152)( 78,153)( 79,154)( 80,155);;
s2 := ( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)( 33, 39)
( 34, 38)( 35, 37)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)
( 57, 60)( 58, 59)( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 71, 76)
( 72, 80)( 73, 79)( 74, 78)( 75, 77)( 81,101)( 82,105)( 83,104)( 84,103)
( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)( 91,111)( 92,115)
( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)( 98,119)( 99,118)(100,117)
(121,141)(122,145)(123,144)(124,143)(125,142)(126,146)(127,150)(128,149)
(129,148)(130,147)(131,151)(132,155)(133,154)(134,153)(135,152)(136,156)
(137,160)(138,159)(139,158)(140,157);;
s3 := ( 1, 43)( 2, 42)( 3, 41)( 4, 45)( 5, 44)( 6, 48)( 7, 47)( 8, 46)
( 9, 50)( 10, 49)( 11, 53)( 12, 52)( 13, 51)( 14, 55)( 15, 54)( 16, 58)
( 17, 57)( 18, 56)( 19, 60)( 20, 59)( 21, 68)( 22, 67)( 23, 66)( 24, 70)
( 25, 69)( 26, 63)( 27, 62)( 28, 61)( 29, 65)( 30, 64)( 31, 78)( 32, 77)
( 33, 76)( 34, 80)( 35, 79)( 36, 73)( 37, 72)( 38, 71)( 39, 75)( 40, 74)
( 81,123)( 82,122)( 83,121)( 84,125)( 85,124)( 86,128)( 87,127)( 88,126)
( 89,130)( 90,129)( 91,133)( 92,132)( 93,131)( 94,135)( 95,134)( 96,138)
( 97,137)( 98,136)( 99,140)(100,139)(101,148)(102,147)(103,146)(104,150)
(105,149)(106,143)(107,142)(108,141)(109,145)(110,144)(111,158)(112,157)
(113,156)(114,160)(115,159)(116,153)(117,152)(118,151)(119,155)(120,154);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(160)!( 1, 41)( 2, 42)( 3, 43)( 4, 44)( 5, 45)( 6, 46)( 7, 47)
( 8, 48)( 9, 49)( 10, 50)( 11, 51)( 12, 52)( 13, 53)( 14, 54)( 15, 55)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 63)
( 24, 64)( 25, 65)( 26, 66)( 27, 67)( 28, 68)( 29, 69)( 30, 70)( 31, 71)
( 32, 72)( 33, 73)( 34, 74)( 35, 75)( 36, 76)( 37, 77)( 38, 78)( 39, 79)
( 40, 80)( 81,131)( 82,132)( 83,133)( 84,134)( 85,135)( 86,136)( 87,137)
( 88,138)( 89,139)( 90,140)( 91,121)( 92,122)( 93,123)( 94,124)( 95,125)
( 96,126)( 97,127)( 98,128)( 99,129)(100,130)(101,151)(102,152)(103,153)
(104,154)(105,155)(106,156)(107,157)(108,158)(109,159)(110,160)(111,141)
(112,142)(113,143)(114,144)(115,145)(116,146)(117,147)(118,148)(119,149)
(120,150);
s1 := Sym(160)!( 1, 81)( 2, 82)( 3, 83)( 4, 84)( 5, 85)( 6, 86)( 7, 87)
( 8, 88)( 9, 89)( 10, 90)( 11, 91)( 12, 92)( 13, 93)( 14, 94)( 15, 95)
( 16, 96)( 17, 97)( 18, 98)( 19, 99)( 20,100)( 21,106)( 22,107)( 23,108)
( 24,109)( 25,110)( 26,101)( 27,102)( 28,103)( 29,104)( 30,105)( 31,116)
( 32,117)( 33,118)( 34,119)( 35,120)( 36,111)( 37,112)( 38,113)( 39,114)
( 40,115)( 41,121)( 42,122)( 43,123)( 44,124)( 45,125)( 46,126)( 47,127)
( 48,128)( 49,129)( 50,130)( 51,131)( 52,132)( 53,133)( 54,134)( 55,135)
( 56,136)( 57,137)( 58,138)( 59,139)( 60,140)( 61,146)( 62,147)( 63,148)
( 64,149)( 65,150)( 66,141)( 67,142)( 68,143)( 69,144)( 70,145)( 71,156)
( 72,157)( 73,158)( 74,159)( 75,160)( 76,151)( 77,152)( 78,153)( 79,154)
( 80,155);
s2 := Sym(160)!( 2, 5)( 3, 4)( 7, 10)( 8, 9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 21, 26)( 22, 30)( 23, 29)( 24, 28)( 25, 27)( 31, 36)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)
( 53, 54)( 57, 60)( 58, 59)( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)
( 71, 76)( 72, 80)( 73, 79)( 74, 78)( 75, 77)( 81,101)( 82,105)( 83,104)
( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)( 91,111)
( 92,115)( 93,114)( 94,113)( 95,112)( 96,116)( 97,120)( 98,119)( 99,118)
(100,117)(121,141)(122,145)(123,144)(124,143)(125,142)(126,146)(127,150)
(128,149)(129,148)(130,147)(131,151)(132,155)(133,154)(134,153)(135,152)
(136,156)(137,160)(138,159)(139,158)(140,157);
s3 := Sym(160)!( 1, 43)( 2, 42)( 3, 41)( 4, 45)( 5, 44)( 6, 48)( 7, 47)
( 8, 46)( 9, 50)( 10, 49)( 11, 53)( 12, 52)( 13, 51)( 14, 55)( 15, 54)
( 16, 58)( 17, 57)( 18, 56)( 19, 60)( 20, 59)( 21, 68)( 22, 67)( 23, 66)
( 24, 70)( 25, 69)( 26, 63)( 27, 62)( 28, 61)( 29, 65)( 30, 64)( 31, 78)
( 32, 77)( 33, 76)( 34, 80)( 35, 79)( 36, 73)( 37, 72)( 38, 71)( 39, 75)
( 40, 74)( 81,123)( 82,122)( 83,121)( 84,125)( 85,124)( 86,128)( 87,127)
( 88,126)( 89,130)( 90,129)( 91,133)( 92,132)( 93,131)( 94,135)( 95,134)
( 96,138)( 97,137)( 98,136)( 99,140)(100,139)(101,148)(102,147)(103,146)
(104,150)(105,149)(106,143)(107,142)(108,141)(109,145)(110,144)(111,158)
(112,157)(113,156)(114,160)(115,159)(116,153)(117,152)(118,151)(119,155)
(120,154);
poly := sub<Sym(160)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope