Polytope of Type {2,16,20}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,16,20}*1280b
if this polytope has a name.
Group : SmallGroup(1280,323453)
Rank : 4
Schlafli Type : {2,16,20}
Number of vertices, edges, etc : 2, 16, 160, 20
Order of s0s1s2s3 : 80
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,8,20}*640a
   4-fold quotients : {2,4,20}*320, {2,8,10}*320
   5-fold quotients : {2,16,4}*256b
   8-fold quotients : {2,2,20}*160, {2,4,10}*160
   10-fold quotients : {2,8,4}*128a
   16-fold quotients : {2,2,10}*80
   20-fold quotients : {2,4,4}*64, {2,8,2}*64
   32-fold quotients : {2,2,5}*40
   40-fold quotients : {2,2,4}*32, {2,4,2}*32
   80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  3,163)(  4,164)(  5,165)(  6,166)(  7,167)(  8,168)(  9,169)( 10,170)
( 11,171)( 12,172)( 13,178)( 14,179)( 15,180)( 16,181)( 17,182)( 18,173)
( 19,174)( 20,175)( 21,176)( 22,177)( 23,188)( 24,189)( 25,190)( 26,191)
( 27,192)( 28,183)( 29,184)( 30,185)( 31,186)( 32,187)( 33,193)( 34,194)
( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)( 40,200)( 41,201)( 42,202)
( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)( 48,218)( 49,219)( 50,220)
( 51,221)( 52,222)( 53,203)( 54,204)( 55,205)( 56,206)( 57,207)( 58,208)
( 59,209)( 60,210)( 61,211)( 62,212)( 63,238)( 64,239)( 65,240)( 66,241)
( 67,242)( 68,233)( 69,234)( 70,235)( 71,236)( 72,237)( 73,228)( 74,229)
( 75,230)( 76,231)( 77,232)( 78,223)( 79,224)( 80,225)( 81,226)( 82,227)
( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)( 88,248)( 89,249)( 90,250)
( 91,251)( 92,252)( 93,258)( 94,259)( 95,260)( 96,261)( 97,262)( 98,253)
( 99,254)(100,255)(101,256)(102,257)(103,268)(104,269)(105,270)(106,271)
(107,272)(108,263)(109,264)(110,265)(111,266)(112,267)(113,273)(114,274)
(115,275)(116,276)(117,277)(118,278)(119,279)(120,280)(121,281)(122,282)
(123,293)(124,294)(125,295)(126,296)(127,297)(128,298)(129,299)(130,300)
(131,301)(132,302)(133,283)(134,284)(135,285)(136,286)(137,287)(138,288)
(139,289)(140,290)(141,291)(142,292)(143,318)(144,319)(145,320)(146,321)
(147,322)(148,313)(149,314)(150,315)(151,316)(152,317)(153,308)(154,309)
(155,310)(156,311)(157,312)(158,303)(159,304)(160,305)(161,306)(162,307);;
s2 := (  4,  7)(  5,  6)(  9, 12)( 10, 11)( 13, 18)( 14, 22)( 15, 21)( 16, 20)
( 17, 19)( 24, 27)( 25, 26)( 29, 32)( 30, 31)( 33, 38)( 34, 42)( 35, 41)
( 36, 40)( 37, 39)( 43, 53)( 44, 57)( 45, 56)( 46, 55)( 47, 54)( 48, 58)
( 49, 62)( 50, 61)( 51, 60)( 52, 59)( 63, 73)( 64, 77)( 65, 76)( 66, 75)
( 67, 74)( 68, 78)( 69, 82)( 70, 81)( 71, 80)( 72, 79)( 83,103)( 84,107)
( 85,106)( 86,105)( 87,104)( 88,108)( 89,112)( 90,111)( 91,110)( 92,109)
( 93,118)( 94,122)( 95,121)( 96,120)( 97,119)( 98,113)( 99,117)(100,116)
(101,115)(102,114)(123,153)(124,157)(125,156)(126,155)(127,154)(128,158)
(129,162)(130,161)(131,160)(132,159)(133,143)(134,147)(135,146)(136,145)
(137,144)(138,148)(139,152)(140,151)(141,150)(142,149)(163,203)(164,207)
(165,206)(166,205)(167,204)(168,208)(169,212)(170,211)(171,210)(172,209)
(173,218)(174,222)(175,221)(176,220)(177,219)(178,213)(179,217)(180,216)
(181,215)(182,214)(183,223)(184,227)(185,226)(186,225)(187,224)(188,228)
(189,232)(190,231)(191,230)(192,229)(193,238)(194,242)(195,241)(196,240)
(197,239)(198,233)(199,237)(200,236)(201,235)(202,234)(243,308)(244,312)
(245,311)(246,310)(247,309)(248,303)(249,307)(250,306)(251,305)(252,304)
(253,313)(254,317)(255,316)(256,315)(257,314)(258,318)(259,322)(260,321)
(261,320)(262,319)(263,288)(264,292)(265,291)(266,290)(267,289)(268,283)
(269,287)(270,286)(271,285)(272,284)(273,293)(274,297)(275,296)(276,295)
(277,294)(278,298)(279,302)(280,301)(281,300)(282,299);;
s3 := (  3, 84)(  4, 83)(  5, 87)(  6, 86)(  7, 85)(  8, 89)(  9, 88)( 10, 92)
( 11, 91)( 12, 90)( 13, 94)( 14, 93)( 15, 97)( 16, 96)( 17, 95)( 18, 99)
( 19, 98)( 20,102)( 21,101)( 22,100)( 23,104)( 24,103)( 25,107)( 26,106)
( 27,105)( 28,109)( 29,108)( 30,112)( 31,111)( 32,110)( 33,114)( 34,113)
( 35,117)( 36,116)( 37,115)( 38,119)( 39,118)( 40,122)( 41,121)( 42,120)
( 43,129)( 44,128)( 45,132)( 46,131)( 47,130)( 48,124)( 49,123)( 50,127)
( 51,126)( 52,125)( 53,139)( 54,138)( 55,142)( 56,141)( 57,140)( 58,134)
( 59,133)( 60,137)( 61,136)( 62,135)( 63,149)( 64,148)( 65,152)( 66,151)
( 67,150)( 68,144)( 69,143)( 70,147)( 71,146)( 72,145)( 73,159)( 74,158)
( 75,162)( 76,161)( 77,160)( 78,154)( 79,153)( 80,157)( 81,156)( 82,155)
(163,244)(164,243)(165,247)(166,246)(167,245)(168,249)(169,248)(170,252)
(171,251)(172,250)(173,254)(174,253)(175,257)(176,256)(177,255)(178,259)
(179,258)(180,262)(181,261)(182,260)(183,264)(184,263)(185,267)(186,266)
(187,265)(188,269)(189,268)(190,272)(191,271)(192,270)(193,274)(194,273)
(195,277)(196,276)(197,275)(198,279)(199,278)(200,282)(201,281)(202,280)
(203,289)(204,288)(205,292)(206,291)(207,290)(208,284)(209,283)(210,287)
(211,286)(212,285)(213,299)(214,298)(215,302)(216,301)(217,300)(218,294)
(219,293)(220,297)(221,296)(222,295)(223,309)(224,308)(225,312)(226,311)
(227,310)(228,304)(229,303)(230,307)(231,306)(232,305)(233,319)(234,318)
(235,322)(236,321)(237,320)(238,314)(239,313)(240,317)(241,316)(242,315);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(1,2);
s1 := Sym(322)!(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)(  8,168)(  9,169)
( 10,170)( 11,171)( 12,172)( 13,178)( 14,179)( 15,180)( 16,181)( 17,182)
( 18,173)( 19,174)( 20,175)( 21,176)( 22,177)( 23,188)( 24,189)( 25,190)
( 26,191)( 27,192)( 28,183)( 29,184)( 30,185)( 31,186)( 32,187)( 33,193)
( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)( 40,200)( 41,201)
( 42,202)( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)( 48,218)( 49,219)
( 50,220)( 51,221)( 52,222)( 53,203)( 54,204)( 55,205)( 56,206)( 57,207)
( 58,208)( 59,209)( 60,210)( 61,211)( 62,212)( 63,238)( 64,239)( 65,240)
( 66,241)( 67,242)( 68,233)( 69,234)( 70,235)( 71,236)( 72,237)( 73,228)
( 74,229)( 75,230)( 76,231)( 77,232)( 78,223)( 79,224)( 80,225)( 81,226)
( 82,227)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)( 88,248)( 89,249)
( 90,250)( 91,251)( 92,252)( 93,258)( 94,259)( 95,260)( 96,261)( 97,262)
( 98,253)( 99,254)(100,255)(101,256)(102,257)(103,268)(104,269)(105,270)
(106,271)(107,272)(108,263)(109,264)(110,265)(111,266)(112,267)(113,273)
(114,274)(115,275)(116,276)(117,277)(118,278)(119,279)(120,280)(121,281)
(122,282)(123,293)(124,294)(125,295)(126,296)(127,297)(128,298)(129,299)
(130,300)(131,301)(132,302)(133,283)(134,284)(135,285)(136,286)(137,287)
(138,288)(139,289)(140,290)(141,291)(142,292)(143,318)(144,319)(145,320)
(146,321)(147,322)(148,313)(149,314)(150,315)(151,316)(152,317)(153,308)
(154,309)(155,310)(156,311)(157,312)(158,303)(159,304)(160,305)(161,306)
(162,307);
s2 := Sym(322)!(  4,  7)(  5,  6)(  9, 12)( 10, 11)( 13, 18)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 24, 27)( 25, 26)( 29, 32)( 30, 31)( 33, 38)( 34, 42)
( 35, 41)( 36, 40)( 37, 39)( 43, 53)( 44, 57)( 45, 56)( 46, 55)( 47, 54)
( 48, 58)( 49, 62)( 50, 61)( 51, 60)( 52, 59)( 63, 73)( 64, 77)( 65, 76)
( 66, 75)( 67, 74)( 68, 78)( 69, 82)( 70, 81)( 71, 80)( 72, 79)( 83,103)
( 84,107)( 85,106)( 86,105)( 87,104)( 88,108)( 89,112)( 90,111)( 91,110)
( 92,109)( 93,118)( 94,122)( 95,121)( 96,120)( 97,119)( 98,113)( 99,117)
(100,116)(101,115)(102,114)(123,153)(124,157)(125,156)(126,155)(127,154)
(128,158)(129,162)(130,161)(131,160)(132,159)(133,143)(134,147)(135,146)
(136,145)(137,144)(138,148)(139,152)(140,151)(141,150)(142,149)(163,203)
(164,207)(165,206)(166,205)(167,204)(168,208)(169,212)(170,211)(171,210)
(172,209)(173,218)(174,222)(175,221)(176,220)(177,219)(178,213)(179,217)
(180,216)(181,215)(182,214)(183,223)(184,227)(185,226)(186,225)(187,224)
(188,228)(189,232)(190,231)(191,230)(192,229)(193,238)(194,242)(195,241)
(196,240)(197,239)(198,233)(199,237)(200,236)(201,235)(202,234)(243,308)
(244,312)(245,311)(246,310)(247,309)(248,303)(249,307)(250,306)(251,305)
(252,304)(253,313)(254,317)(255,316)(256,315)(257,314)(258,318)(259,322)
(260,321)(261,320)(262,319)(263,288)(264,292)(265,291)(266,290)(267,289)
(268,283)(269,287)(270,286)(271,285)(272,284)(273,293)(274,297)(275,296)
(276,295)(277,294)(278,298)(279,302)(280,301)(281,300)(282,299);
s3 := Sym(322)!(  3, 84)(  4, 83)(  5, 87)(  6, 86)(  7, 85)(  8, 89)(  9, 88)
( 10, 92)( 11, 91)( 12, 90)( 13, 94)( 14, 93)( 15, 97)( 16, 96)( 17, 95)
( 18, 99)( 19, 98)( 20,102)( 21,101)( 22,100)( 23,104)( 24,103)( 25,107)
( 26,106)( 27,105)( 28,109)( 29,108)( 30,112)( 31,111)( 32,110)( 33,114)
( 34,113)( 35,117)( 36,116)( 37,115)( 38,119)( 39,118)( 40,122)( 41,121)
( 42,120)( 43,129)( 44,128)( 45,132)( 46,131)( 47,130)( 48,124)( 49,123)
( 50,127)( 51,126)( 52,125)( 53,139)( 54,138)( 55,142)( 56,141)( 57,140)
( 58,134)( 59,133)( 60,137)( 61,136)( 62,135)( 63,149)( 64,148)( 65,152)
( 66,151)( 67,150)( 68,144)( 69,143)( 70,147)( 71,146)( 72,145)( 73,159)
( 74,158)( 75,162)( 76,161)( 77,160)( 78,154)( 79,153)( 80,157)( 81,156)
( 82,155)(163,244)(164,243)(165,247)(166,246)(167,245)(168,249)(169,248)
(170,252)(171,251)(172,250)(173,254)(174,253)(175,257)(176,256)(177,255)
(178,259)(179,258)(180,262)(181,261)(182,260)(183,264)(184,263)(185,267)
(186,266)(187,265)(188,269)(189,268)(190,272)(191,271)(192,270)(193,274)
(194,273)(195,277)(196,276)(197,275)(198,279)(199,278)(200,282)(201,281)
(202,280)(203,289)(204,288)(205,292)(206,291)(207,290)(208,284)(209,283)
(210,287)(211,286)(212,285)(213,299)(214,298)(215,302)(216,301)(217,300)
(218,294)(219,293)(220,297)(221,296)(222,295)(223,309)(224,308)(225,312)
(226,311)(227,310)(228,304)(229,303)(230,307)(231,306)(232,305)(233,319)
(234,318)(235,322)(236,321)(237,320)(238,314)(239,313)(240,317)(241,316)
(242,315);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope