Polytope of Type {16,20,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,20,2}*1280b
if this polytope has a name.
Group : SmallGroup(1280,323453)
Rank : 4
Schlafli Type : {16,20,2}
Number of vertices, edges, etc : 16, 160, 20, 2
Order of s0s1s2s3 : 80
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,20,2}*640a
   4-fold quotients : {4,20,2}*320, {8,10,2}*320
   5-fold quotients : {16,4,2}*256b
   8-fold quotients : {2,20,2}*160, {4,10,2}*160
   10-fold quotients : {8,4,2}*128a
   16-fold quotients : {2,10,2}*80
   20-fold quotients : {4,4,2}*64, {8,2,2}*64
   32-fold quotients : {2,5,2}*40
   40-fold quotients : {2,4,2}*32, {4,2,2}*32
   80-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)(  8,168)
(  9,169)( 10,170)( 11,176)( 12,177)( 13,178)( 14,179)( 15,180)( 16,171)
( 17,172)( 18,173)( 19,174)( 20,175)( 21,186)( 22,187)( 23,188)( 24,189)
( 25,190)( 26,181)( 27,182)( 28,183)( 29,184)( 30,185)( 31,191)( 32,192)
( 33,193)( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)( 40,200)
( 41,211)( 42,212)( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)( 48,218)
( 49,219)( 50,220)( 51,201)( 52,202)( 53,203)( 54,204)( 55,205)( 56,206)
( 57,207)( 58,208)( 59,209)( 60,210)( 61,236)( 62,237)( 63,238)( 64,239)
( 65,240)( 66,231)( 67,232)( 68,233)( 69,234)( 70,235)( 71,226)( 72,227)
( 73,228)( 74,229)( 75,230)( 76,221)( 77,222)( 78,223)( 79,224)( 80,225)
( 81,241)( 82,242)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)( 88,248)
( 89,249)( 90,250)( 91,256)( 92,257)( 93,258)( 94,259)( 95,260)( 96,251)
( 97,252)( 98,253)( 99,254)(100,255)(101,266)(102,267)(103,268)(104,269)
(105,270)(106,261)(107,262)(108,263)(109,264)(110,265)(111,271)(112,272)
(113,273)(114,274)(115,275)(116,276)(117,277)(118,278)(119,279)(120,280)
(121,291)(122,292)(123,293)(124,294)(125,295)(126,296)(127,297)(128,298)
(129,299)(130,300)(131,281)(132,282)(133,283)(134,284)(135,285)(136,286)
(137,287)(138,288)(139,289)(140,290)(141,316)(142,317)(143,318)(144,319)
(145,320)(146,311)(147,312)(148,313)(149,314)(150,315)(151,306)(152,307)
(153,308)(154,309)(155,310)(156,301)(157,302)(158,303)(159,304)(160,305);;
s1 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 11, 16)( 12, 20)( 13, 19)( 14, 18)
( 15, 17)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 31, 36)( 32, 40)( 33, 39)
( 34, 38)( 35, 37)( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)( 46, 56)
( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 61, 71)( 62, 75)( 63, 74)( 64, 73)
( 65, 72)( 66, 76)( 67, 80)( 68, 79)( 69, 78)( 70, 77)( 81,101)( 82,105)
( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)( 90,107)
( 91,116)( 92,120)( 93,119)( 94,118)( 95,117)( 96,111)( 97,115)( 98,114)
( 99,113)(100,112)(121,151)(122,155)(123,154)(124,153)(125,152)(126,156)
(127,160)(128,159)(129,158)(130,157)(131,141)(132,145)(133,144)(134,143)
(135,142)(136,146)(137,150)(138,149)(139,148)(140,147)(161,201)(162,205)
(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)(170,207)
(171,216)(172,220)(173,219)(174,218)(175,217)(176,211)(177,215)(178,214)
(179,213)(180,212)(181,221)(182,225)(183,224)(184,223)(185,222)(186,226)
(187,230)(188,229)(189,228)(190,227)(191,236)(192,240)(193,239)(194,238)
(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,306)(242,310)
(243,309)(244,308)(245,307)(246,301)(247,305)(248,304)(249,303)(250,302)
(251,311)(252,315)(253,314)(254,313)(255,312)(256,316)(257,320)(258,319)
(259,318)(260,317)(261,286)(262,290)(263,289)(264,288)(265,287)(266,281)
(267,285)(268,284)(269,283)(270,282)(271,291)(272,295)(273,294)(274,293)
(275,292)(276,296)(277,300)(278,299)(279,298)(280,297);;
s2 := (  1, 82)(  2, 81)(  3, 85)(  4, 84)(  5, 83)(  6, 87)(  7, 86)(  8, 90)
(  9, 89)( 10, 88)( 11, 92)( 12, 91)( 13, 95)( 14, 94)( 15, 93)( 16, 97)
( 17, 96)( 18,100)( 19, 99)( 20, 98)( 21,102)( 22,101)( 23,105)( 24,104)
( 25,103)( 26,107)( 27,106)( 28,110)( 29,109)( 30,108)( 31,112)( 32,111)
( 33,115)( 34,114)( 35,113)( 36,117)( 37,116)( 38,120)( 39,119)( 40,118)
( 41,127)( 42,126)( 43,130)( 44,129)( 45,128)( 46,122)( 47,121)( 48,125)
( 49,124)( 50,123)( 51,137)( 52,136)( 53,140)( 54,139)( 55,138)( 56,132)
( 57,131)( 58,135)( 59,134)( 60,133)( 61,147)( 62,146)( 63,150)( 64,149)
( 65,148)( 66,142)( 67,141)( 68,145)( 69,144)( 70,143)( 71,157)( 72,156)
( 73,160)( 74,159)( 75,158)( 76,152)( 77,151)( 78,155)( 79,154)( 80,153)
(161,242)(162,241)(163,245)(164,244)(165,243)(166,247)(167,246)(168,250)
(169,249)(170,248)(171,252)(172,251)(173,255)(174,254)(175,253)(176,257)
(177,256)(178,260)(179,259)(180,258)(181,262)(182,261)(183,265)(184,264)
(185,263)(186,267)(187,266)(188,270)(189,269)(190,268)(191,272)(192,271)
(193,275)(194,274)(195,273)(196,277)(197,276)(198,280)(199,279)(200,278)
(201,287)(202,286)(203,290)(204,289)(205,288)(206,282)(207,281)(208,285)
(209,284)(210,283)(211,297)(212,296)(213,300)(214,299)(215,298)(216,292)
(217,291)(218,295)(219,294)(220,293)(221,307)(222,306)(223,310)(224,309)
(225,308)(226,302)(227,301)(228,305)(229,304)(230,303)(231,317)(232,316)
(233,320)(234,319)(235,318)(236,312)(237,311)(238,315)(239,314)(240,313);;
s3 := (321,322);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(322)!(  1,161)(  2,162)(  3,163)(  4,164)(  5,165)(  6,166)(  7,167)
(  8,168)(  9,169)( 10,170)( 11,176)( 12,177)( 13,178)( 14,179)( 15,180)
( 16,171)( 17,172)( 18,173)( 19,174)( 20,175)( 21,186)( 22,187)( 23,188)
( 24,189)( 25,190)( 26,181)( 27,182)( 28,183)( 29,184)( 30,185)( 31,191)
( 32,192)( 33,193)( 34,194)( 35,195)( 36,196)( 37,197)( 38,198)( 39,199)
( 40,200)( 41,211)( 42,212)( 43,213)( 44,214)( 45,215)( 46,216)( 47,217)
( 48,218)( 49,219)( 50,220)( 51,201)( 52,202)( 53,203)( 54,204)( 55,205)
( 56,206)( 57,207)( 58,208)( 59,209)( 60,210)( 61,236)( 62,237)( 63,238)
( 64,239)( 65,240)( 66,231)( 67,232)( 68,233)( 69,234)( 70,235)( 71,226)
( 72,227)( 73,228)( 74,229)( 75,230)( 76,221)( 77,222)( 78,223)( 79,224)
( 80,225)( 81,241)( 82,242)( 83,243)( 84,244)( 85,245)( 86,246)( 87,247)
( 88,248)( 89,249)( 90,250)( 91,256)( 92,257)( 93,258)( 94,259)( 95,260)
( 96,251)( 97,252)( 98,253)( 99,254)(100,255)(101,266)(102,267)(103,268)
(104,269)(105,270)(106,261)(107,262)(108,263)(109,264)(110,265)(111,271)
(112,272)(113,273)(114,274)(115,275)(116,276)(117,277)(118,278)(119,279)
(120,280)(121,291)(122,292)(123,293)(124,294)(125,295)(126,296)(127,297)
(128,298)(129,299)(130,300)(131,281)(132,282)(133,283)(134,284)(135,285)
(136,286)(137,287)(138,288)(139,289)(140,290)(141,316)(142,317)(143,318)
(144,319)(145,320)(146,311)(147,312)(148,313)(149,314)(150,315)(151,306)
(152,307)(153,308)(154,309)(155,310)(156,301)(157,302)(158,303)(159,304)
(160,305);
s1 := Sym(322)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 11, 16)( 12, 20)( 13, 19)
( 14, 18)( 15, 17)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 31, 36)( 32, 40)
( 33, 39)( 34, 38)( 35, 37)( 41, 51)( 42, 55)( 43, 54)( 44, 53)( 45, 52)
( 46, 56)( 47, 60)( 48, 59)( 49, 58)( 50, 57)( 61, 71)( 62, 75)( 63, 74)
( 64, 73)( 65, 72)( 66, 76)( 67, 80)( 68, 79)( 69, 78)( 70, 77)( 81,101)
( 82,105)( 83,104)( 84,103)( 85,102)( 86,106)( 87,110)( 88,109)( 89,108)
( 90,107)( 91,116)( 92,120)( 93,119)( 94,118)( 95,117)( 96,111)( 97,115)
( 98,114)( 99,113)(100,112)(121,151)(122,155)(123,154)(124,153)(125,152)
(126,156)(127,160)(128,159)(129,158)(130,157)(131,141)(132,145)(133,144)
(134,143)(135,142)(136,146)(137,150)(138,149)(139,148)(140,147)(161,201)
(162,205)(163,204)(164,203)(165,202)(166,206)(167,210)(168,209)(169,208)
(170,207)(171,216)(172,220)(173,219)(174,218)(175,217)(176,211)(177,215)
(178,214)(179,213)(180,212)(181,221)(182,225)(183,224)(184,223)(185,222)
(186,226)(187,230)(188,229)(189,228)(190,227)(191,236)(192,240)(193,239)
(194,238)(195,237)(196,231)(197,235)(198,234)(199,233)(200,232)(241,306)
(242,310)(243,309)(244,308)(245,307)(246,301)(247,305)(248,304)(249,303)
(250,302)(251,311)(252,315)(253,314)(254,313)(255,312)(256,316)(257,320)
(258,319)(259,318)(260,317)(261,286)(262,290)(263,289)(264,288)(265,287)
(266,281)(267,285)(268,284)(269,283)(270,282)(271,291)(272,295)(273,294)
(274,293)(275,292)(276,296)(277,300)(278,299)(279,298)(280,297);
s2 := Sym(322)!(  1, 82)(  2, 81)(  3, 85)(  4, 84)(  5, 83)(  6, 87)(  7, 86)
(  8, 90)(  9, 89)( 10, 88)( 11, 92)( 12, 91)( 13, 95)( 14, 94)( 15, 93)
( 16, 97)( 17, 96)( 18,100)( 19, 99)( 20, 98)( 21,102)( 22,101)( 23,105)
( 24,104)( 25,103)( 26,107)( 27,106)( 28,110)( 29,109)( 30,108)( 31,112)
( 32,111)( 33,115)( 34,114)( 35,113)( 36,117)( 37,116)( 38,120)( 39,119)
( 40,118)( 41,127)( 42,126)( 43,130)( 44,129)( 45,128)( 46,122)( 47,121)
( 48,125)( 49,124)( 50,123)( 51,137)( 52,136)( 53,140)( 54,139)( 55,138)
( 56,132)( 57,131)( 58,135)( 59,134)( 60,133)( 61,147)( 62,146)( 63,150)
( 64,149)( 65,148)( 66,142)( 67,141)( 68,145)( 69,144)( 70,143)( 71,157)
( 72,156)( 73,160)( 74,159)( 75,158)( 76,152)( 77,151)( 78,155)( 79,154)
( 80,153)(161,242)(162,241)(163,245)(164,244)(165,243)(166,247)(167,246)
(168,250)(169,249)(170,248)(171,252)(172,251)(173,255)(174,254)(175,253)
(176,257)(177,256)(178,260)(179,259)(180,258)(181,262)(182,261)(183,265)
(184,264)(185,263)(186,267)(187,266)(188,270)(189,269)(190,268)(191,272)
(192,271)(193,275)(194,274)(195,273)(196,277)(197,276)(198,280)(199,279)
(200,278)(201,287)(202,286)(203,290)(204,289)(205,288)(206,282)(207,281)
(208,285)(209,284)(210,283)(211,297)(212,296)(213,300)(214,299)(215,298)
(216,292)(217,291)(218,295)(219,294)(220,293)(221,307)(222,306)(223,310)
(224,309)(225,308)(226,302)(227,301)(228,305)(229,304)(230,303)(231,317)
(232,316)(233,320)(234,319)(235,318)(236,312)(237,311)(238,315)(239,314)
(240,313);
s3 := Sym(322)!(321,322);
poly := sub<Sym(322)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope