include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {40,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {40,4}*1280b
if this polytope has a name.
Group : SmallGroup(1280,90280)
Rank : 3
Schlafli Type : {40,4}
Number of vertices, edges, etc : 160, 320, 16
Order of s0s1s2 : 20
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {40,4}*640b
4-fold quotients : {20,4}*320
5-fold quotients : {8,4}*256b
8-fold quotients : {20,4}*160
10-fold quotients : {8,4}*128b
16-fold quotients : {20,2}*80, {10,4}*80
20-fold quotients : {4,4}*64
32-fold quotients : {10,2}*40
40-fold quotients : {4,4}*32
64-fold quotients : {5,2}*20
80-fold quotients : {2,4}*16, {4,2}*16
160-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 81)( 2, 85)( 3, 84)( 4, 83)( 5, 82)( 6, 86)( 7, 90)( 8, 89)
( 9, 88)( 10, 87)( 11, 91)( 12, 95)( 13, 94)( 14, 93)( 15, 92)( 16, 96)
( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21,106)( 22,110)( 23,109)( 24,108)
( 25,107)( 26,101)( 27,105)( 28,104)( 29,103)( 30,102)( 31,116)( 32,120)
( 33,119)( 34,118)( 35,117)( 36,111)( 37,115)( 38,114)( 39,113)( 40,112)
( 41,156)( 42,160)( 43,159)( 44,158)( 45,157)( 46,151)( 47,155)( 48,154)
( 49,153)( 50,152)( 51,146)( 52,150)( 53,149)( 54,148)( 55,147)( 56,141)
( 57,145)( 58,144)( 59,143)( 60,142)( 61,136)( 62,140)( 63,139)( 64,138)
( 65,137)( 66,131)( 67,135)( 68,134)( 69,133)( 70,132)( 71,126)( 72,130)
( 73,129)( 74,128)( 75,127)( 76,121)( 77,125)( 78,124)( 79,123)( 80,122);;
s1 := ( 1, 3)( 4, 5)( 6, 8)( 9, 10)( 11, 13)( 14, 15)( 16, 18)( 19, 20)
( 21, 33)( 22, 32)( 23, 31)( 24, 35)( 25, 34)( 26, 38)( 27, 37)( 28, 36)
( 29, 40)( 30, 39)( 41, 43)( 44, 45)( 46, 48)( 49, 50)( 51, 53)( 54, 55)
( 56, 58)( 59, 60)( 61, 73)( 62, 72)( 63, 71)( 64, 75)( 65, 74)( 66, 78)
( 67, 77)( 68, 76)( 69, 80)( 70, 79)( 81,123)( 82,122)( 83,121)( 84,125)
( 85,124)( 86,128)( 87,127)( 88,126)( 89,130)( 90,129)( 91,133)( 92,132)
( 93,131)( 94,135)( 95,134)( 96,138)( 97,137)( 98,136)( 99,140)(100,139)
(101,153)(102,152)(103,151)(104,155)(105,154)(106,158)(107,157)(108,156)
(109,160)(110,159)(111,143)(112,142)(113,141)(114,145)(115,144)(116,148)
(117,147)(118,146)(119,150)(120,149);;
s2 := ( 11, 16)( 12, 17)( 13, 18)( 14, 19)( 15, 20)( 31, 36)( 32, 37)( 33, 38)
( 34, 39)( 35, 40)( 41, 76)( 42, 77)( 43, 78)( 44, 79)( 45, 80)( 46, 71)
( 47, 72)( 48, 73)( 49, 74)( 50, 75)( 51, 61)( 52, 62)( 53, 63)( 54, 64)
( 55, 65)( 56, 66)( 57, 67)( 58, 68)( 59, 69)( 60, 70)( 91, 96)( 92, 97)
( 93, 98)( 94, 99)( 95,100)(111,116)(112,117)(113,118)(114,119)(115,120)
(121,156)(122,157)(123,158)(124,159)(125,160)(126,151)(127,152)(128,153)
(129,154)(130,155)(131,141)(132,142)(133,143)(134,144)(135,145)(136,146)
(137,147)(138,148)(139,149)(140,150);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(160)!( 1, 81)( 2, 85)( 3, 84)( 4, 83)( 5, 82)( 6, 86)( 7, 90)
( 8, 89)( 9, 88)( 10, 87)( 11, 91)( 12, 95)( 13, 94)( 14, 93)( 15, 92)
( 16, 96)( 17,100)( 18, 99)( 19, 98)( 20, 97)( 21,106)( 22,110)( 23,109)
( 24,108)( 25,107)( 26,101)( 27,105)( 28,104)( 29,103)( 30,102)( 31,116)
( 32,120)( 33,119)( 34,118)( 35,117)( 36,111)( 37,115)( 38,114)( 39,113)
( 40,112)( 41,156)( 42,160)( 43,159)( 44,158)( 45,157)( 46,151)( 47,155)
( 48,154)( 49,153)( 50,152)( 51,146)( 52,150)( 53,149)( 54,148)( 55,147)
( 56,141)( 57,145)( 58,144)( 59,143)( 60,142)( 61,136)( 62,140)( 63,139)
( 64,138)( 65,137)( 66,131)( 67,135)( 68,134)( 69,133)( 70,132)( 71,126)
( 72,130)( 73,129)( 74,128)( 75,127)( 76,121)( 77,125)( 78,124)( 79,123)
( 80,122);
s1 := Sym(160)!( 1, 3)( 4, 5)( 6, 8)( 9, 10)( 11, 13)( 14, 15)( 16, 18)
( 19, 20)( 21, 33)( 22, 32)( 23, 31)( 24, 35)( 25, 34)( 26, 38)( 27, 37)
( 28, 36)( 29, 40)( 30, 39)( 41, 43)( 44, 45)( 46, 48)( 49, 50)( 51, 53)
( 54, 55)( 56, 58)( 59, 60)( 61, 73)( 62, 72)( 63, 71)( 64, 75)( 65, 74)
( 66, 78)( 67, 77)( 68, 76)( 69, 80)( 70, 79)( 81,123)( 82,122)( 83,121)
( 84,125)( 85,124)( 86,128)( 87,127)( 88,126)( 89,130)( 90,129)( 91,133)
( 92,132)( 93,131)( 94,135)( 95,134)( 96,138)( 97,137)( 98,136)( 99,140)
(100,139)(101,153)(102,152)(103,151)(104,155)(105,154)(106,158)(107,157)
(108,156)(109,160)(110,159)(111,143)(112,142)(113,141)(114,145)(115,144)
(116,148)(117,147)(118,146)(119,150)(120,149);
s2 := Sym(160)!( 11, 16)( 12, 17)( 13, 18)( 14, 19)( 15, 20)( 31, 36)( 32, 37)
( 33, 38)( 34, 39)( 35, 40)( 41, 76)( 42, 77)( 43, 78)( 44, 79)( 45, 80)
( 46, 71)( 47, 72)( 48, 73)( 49, 74)( 50, 75)( 51, 61)( 52, 62)( 53, 63)
( 54, 64)( 55, 65)( 56, 66)( 57, 67)( 58, 68)( 59, 69)( 60, 70)( 91, 96)
( 92, 97)( 93, 98)( 94, 99)( 95,100)(111,116)(112,117)(113,118)(114,119)
(115,120)(121,156)(122,157)(123,158)(124,159)(125,160)(126,151)(127,152)
(128,153)(129,154)(130,155)(131,141)(132,142)(133,143)(134,144)(135,145)
(136,146)(137,147)(138,148)(139,149)(140,150);
poly := sub<Sym(160)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0 >;
References : None.
to this polytope