include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6}*1296
Also Known As : {3,6}(6,6). if this polytope has another name.
Group : SmallGroup(1296,1784)
Rank : 3
Schlafli Type : {3,6}
Number of vertices, edges, etc : 108, 324, 216
Order of s0s1s2 : 36
Order of s0s1s2s1 : 6
Special Properties :
Toroidal
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,6}*432
4-fold quotients : {3,6}*324
9-fold quotients : {3,6}*144
12-fold quotients : {3,6}*108
27-fold quotients : {3,6}*48
36-fold quotients : {3,6}*36
54-fold quotients : {3,3}*24
108-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 21)( 14, 22)( 15, 24)
( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 37, 77)
( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)( 45, 81)
( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)( 51, 88)( 52, 87)( 53, 93)
( 54, 94)( 55, 96)( 56, 95)( 57, 89)( 58, 90)( 59, 92)( 60, 91)( 61,105)
( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)( 69, 97)
( 70, 98)( 71,100)( 72, 99);;
s1 := ( 1, 49)( 2, 51)( 3, 50)( 4, 52)( 5, 57)( 6, 59)( 7, 58)( 8, 60)
( 9, 53)( 10, 55)( 11, 54)( 12, 56)( 13, 65)( 14, 67)( 15, 66)( 16, 68)
( 17, 61)( 18, 63)( 19, 62)( 20, 64)( 21, 69)( 22, 71)( 23, 70)( 24, 72)
( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)( 30, 43)( 31, 42)( 32, 44)
( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 73, 81)( 74, 83)( 75, 82)( 76, 84)
( 78, 79)( 86, 87)( 89, 93)( 90, 95)( 91, 94)( 92, 96)( 97,101)( 98,103)
( 99,102)(100,104)(106,107);;
s2 := ( 1, 2)( 5, 6)( 9, 10)( 13, 30)( 14, 29)( 15, 31)( 16, 32)( 17, 34)
( 18, 33)( 19, 35)( 20, 36)( 21, 26)( 22, 25)( 23, 27)( 24, 28)( 37, 38)
( 41, 42)( 45, 46)( 49, 66)( 50, 65)( 51, 67)( 52, 68)( 53, 70)( 54, 69)
( 55, 71)( 56, 72)( 57, 62)( 58, 61)( 59, 63)( 60, 64)( 73, 74)( 77, 78)
( 81, 82)( 85,102)( 86,101)( 87,103)( 88,104)( 89,106)( 90,105)( 91,107)
( 92,108)( 93, 98)( 94, 97)( 95, 99)( 96,100);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(108)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 21)( 14, 22)
( 15, 24)( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)
( 37, 77)( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)
( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)( 51, 88)( 52, 87)
( 53, 93)( 54, 94)( 55, 96)( 56, 95)( 57, 89)( 58, 90)( 59, 92)( 60, 91)
( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)
( 69, 97)( 70, 98)( 71,100)( 72, 99);
s1 := Sym(108)!( 1, 49)( 2, 51)( 3, 50)( 4, 52)( 5, 57)( 6, 59)( 7, 58)
( 8, 60)( 9, 53)( 10, 55)( 11, 54)( 12, 56)( 13, 65)( 14, 67)( 15, 66)
( 16, 68)( 17, 61)( 18, 63)( 19, 62)( 20, 64)( 21, 69)( 22, 71)( 23, 70)
( 24, 72)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)( 30, 43)( 31, 42)
( 32, 44)( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 73, 81)( 74, 83)( 75, 82)
( 76, 84)( 78, 79)( 86, 87)( 89, 93)( 90, 95)( 91, 94)( 92, 96)( 97,101)
( 98,103)( 99,102)(100,104)(106,107);
s2 := Sym(108)!( 1, 2)( 5, 6)( 9, 10)( 13, 30)( 14, 29)( 15, 31)( 16, 32)
( 17, 34)( 18, 33)( 19, 35)( 20, 36)( 21, 26)( 22, 25)( 23, 27)( 24, 28)
( 37, 38)( 41, 42)( 45, 46)( 49, 66)( 50, 65)( 51, 67)( 52, 68)( 53, 70)
( 54, 69)( 55, 71)( 56, 72)( 57, 62)( 58, 61)( 59, 63)( 60, 64)( 73, 74)
( 77, 78)( 81, 82)( 85,102)( 86,101)( 87,103)( 88,104)( 89,106)( 90,105)
( 91,107)( 92,108)( 93, 98)( 94, 97)( 95, 99)( 96,100);
poly := sub<Sym(108)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >;
References : None.
to this polytope