include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,12}*1296a
if this polytope has a name.
Group : SmallGroup(1296,1786)
Rank : 3
Schlafli Type : {3,12}
Number of vertices, edges, etc : 54, 324, 216
Order of s0s1s2 : 18
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,12}*432
4-fold quotients : {3,6}*324
9-fold quotients : {3,12}*144
12-fold quotients : {3,6}*108
27-fold quotients : {3,4}*48
36-fold quotients : {3,6}*36
54-fold quotients : {3,4}*24
108-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 21)( 14, 22)( 15, 24)
( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 37, 73)
( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)( 45, 77)
( 46, 78)( 47, 80)( 48, 79)( 49, 93)( 50, 94)( 51, 96)( 52, 95)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,101)
( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69,105)
( 70,106)( 71,108)( 72,107)(109,225)(110,226)(111,228)(112,227)(113,221)
(114,222)(115,224)(116,223)(117,217)(118,218)(119,220)(120,219)(121,233)
(122,234)(123,236)(124,235)(125,229)(126,230)(127,232)(128,231)(129,237)
(130,238)(131,240)(132,239)(133,241)(134,242)(135,244)(136,243)(137,249)
(138,250)(139,252)(140,251)(141,245)(142,246)(143,248)(144,247)(145,297)
(146,298)(147,300)(148,299)(149,293)(150,294)(151,296)(152,295)(153,289)
(154,290)(155,292)(156,291)(157,305)(158,306)(159,308)(160,307)(161,301)
(162,302)(163,304)(164,303)(165,309)(166,310)(167,312)(168,311)(169,313)
(170,314)(171,316)(172,315)(173,321)(174,322)(175,324)(176,323)(177,317)
(178,318)(179,320)(180,319)(181,261)(182,262)(183,264)(184,263)(185,257)
(186,258)(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)(193,269)
(194,270)(195,272)(196,271)(197,265)(198,266)(199,268)(200,267)(201,273)
(202,274)(203,276)(204,275)(205,277)(206,278)(207,280)(208,279)(209,285)
(210,286)(211,288)(212,287)(213,281)(214,282)(215,284)(216,283);;
s1 := ( 1,265)( 2,267)( 3,266)( 4,268)( 5,273)( 6,275)( 7,274)( 8,276)
( 9,269)( 10,271)( 11,270)( 12,272)( 13,277)( 14,279)( 15,278)( 16,280)
( 17,285)( 18,287)( 19,286)( 20,288)( 21,281)( 22,283)( 23,282)( 24,284)
( 25,253)( 26,255)( 27,254)( 28,256)( 29,261)( 30,263)( 31,262)( 32,264)
( 33,257)( 34,259)( 35,258)( 36,260)( 37,241)( 38,243)( 39,242)( 40,244)
( 41,249)( 42,251)( 43,250)( 44,252)( 45,245)( 46,247)( 47,246)( 48,248)
( 49,217)( 50,219)( 51,218)( 52,220)( 53,225)( 54,227)( 55,226)( 56,228)
( 57,221)( 58,223)( 59,222)( 60,224)( 61,229)( 62,231)( 63,230)( 64,232)
( 65,237)( 66,239)( 67,238)( 68,240)( 69,233)( 70,235)( 71,234)( 72,236)
( 73,297)( 74,299)( 75,298)( 76,300)( 77,293)( 78,295)( 79,294)( 80,296)
( 81,289)( 82,291)( 83,290)( 84,292)( 85,309)( 86,311)( 87,310)( 88,312)
( 89,305)( 90,307)( 91,306)( 92,308)( 93,301)( 94,303)( 95,302)( 96,304)
( 97,321)( 98,323)( 99,322)(100,324)(101,317)(102,319)(103,318)(104,320)
(105,313)(106,315)(107,314)(108,316)(109,157)(110,159)(111,158)(112,160)
(113,165)(114,167)(115,166)(116,168)(117,161)(118,163)(119,162)(120,164)
(121,169)(122,171)(123,170)(124,172)(125,177)(126,179)(127,178)(128,180)
(129,173)(130,175)(131,174)(132,176)(133,145)(134,147)(135,146)(136,148)
(137,153)(138,155)(139,154)(140,156)(141,149)(142,151)(143,150)(144,152)
(181,189)(182,191)(183,190)(184,192)(186,187)(193,201)(194,203)(195,202)
(196,204)(198,199)(205,213)(206,215)(207,214)(208,216)(210,211);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 30)( 14, 29)
( 15, 32)( 16, 31)( 17, 34)( 18, 33)( 19, 36)( 20, 35)( 21, 26)( 22, 25)
( 23, 28)( 24, 27)( 37, 74)( 38, 73)( 39, 76)( 40, 75)( 41, 78)( 42, 77)
( 43, 80)( 44, 79)( 45, 82)( 46, 81)( 47, 84)( 48, 83)( 49,102)( 50,101)
( 51,104)( 52,103)( 53,106)( 54,105)( 55,108)( 56,107)( 57, 98)( 58, 97)
( 59,100)( 60, 99)( 61, 94)( 62, 93)( 63, 96)( 64, 95)( 65, 86)( 66, 85)
( 67, 88)( 68, 87)( 69, 90)( 70, 89)( 71, 92)( 72, 91)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,138)(122,137)(123,140)(124,139)
(125,142)(126,141)(127,144)(128,143)(129,134)(130,133)(131,136)(132,135)
(145,182)(146,181)(147,184)(148,183)(149,186)(150,185)(151,188)(152,187)
(153,190)(154,189)(155,192)(156,191)(157,210)(158,209)(159,212)(160,211)
(161,214)(162,213)(163,216)(164,215)(165,206)(166,205)(167,208)(168,207)
(169,202)(170,201)(171,204)(172,203)(173,194)(174,193)(175,196)(176,195)
(177,198)(178,197)(179,200)(180,199)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,246)(230,245)(231,248)(232,247)(233,250)(234,249)
(235,252)(236,251)(237,242)(238,241)(239,244)(240,243)(253,290)(254,289)
(255,292)(256,291)(257,294)(258,293)(259,296)(260,295)(261,298)(262,297)
(263,300)(264,299)(265,318)(266,317)(267,320)(268,319)(269,322)(270,321)
(271,324)(272,323)(273,314)(274,313)(275,316)(276,315)(277,310)(278,309)
(279,312)(280,311)(281,302)(282,301)(283,304)(284,303)(285,306)(286,305)
(287,308)(288,307);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(324)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 21)( 14, 22)
( 15, 24)( 16, 23)( 19, 20)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)
( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 81)( 42, 82)( 43, 84)( 44, 83)
( 45, 77)( 46, 78)( 47, 80)( 48, 79)( 49, 93)( 50, 94)( 51, 96)( 52, 95)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)
( 61,101)( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)
( 69,105)( 70,106)( 71,108)( 72,107)(109,225)(110,226)(111,228)(112,227)
(113,221)(114,222)(115,224)(116,223)(117,217)(118,218)(119,220)(120,219)
(121,233)(122,234)(123,236)(124,235)(125,229)(126,230)(127,232)(128,231)
(129,237)(130,238)(131,240)(132,239)(133,241)(134,242)(135,244)(136,243)
(137,249)(138,250)(139,252)(140,251)(141,245)(142,246)(143,248)(144,247)
(145,297)(146,298)(147,300)(148,299)(149,293)(150,294)(151,296)(152,295)
(153,289)(154,290)(155,292)(156,291)(157,305)(158,306)(159,308)(160,307)
(161,301)(162,302)(163,304)(164,303)(165,309)(166,310)(167,312)(168,311)
(169,313)(170,314)(171,316)(172,315)(173,321)(174,322)(175,324)(176,323)
(177,317)(178,318)(179,320)(180,319)(181,261)(182,262)(183,264)(184,263)
(185,257)(186,258)(187,260)(188,259)(189,253)(190,254)(191,256)(192,255)
(193,269)(194,270)(195,272)(196,271)(197,265)(198,266)(199,268)(200,267)
(201,273)(202,274)(203,276)(204,275)(205,277)(206,278)(207,280)(208,279)
(209,285)(210,286)(211,288)(212,287)(213,281)(214,282)(215,284)(216,283);
s1 := Sym(324)!( 1,265)( 2,267)( 3,266)( 4,268)( 5,273)( 6,275)( 7,274)
( 8,276)( 9,269)( 10,271)( 11,270)( 12,272)( 13,277)( 14,279)( 15,278)
( 16,280)( 17,285)( 18,287)( 19,286)( 20,288)( 21,281)( 22,283)( 23,282)
( 24,284)( 25,253)( 26,255)( 27,254)( 28,256)( 29,261)( 30,263)( 31,262)
( 32,264)( 33,257)( 34,259)( 35,258)( 36,260)( 37,241)( 38,243)( 39,242)
( 40,244)( 41,249)( 42,251)( 43,250)( 44,252)( 45,245)( 46,247)( 47,246)
( 48,248)( 49,217)( 50,219)( 51,218)( 52,220)( 53,225)( 54,227)( 55,226)
( 56,228)( 57,221)( 58,223)( 59,222)( 60,224)( 61,229)( 62,231)( 63,230)
( 64,232)( 65,237)( 66,239)( 67,238)( 68,240)( 69,233)( 70,235)( 71,234)
( 72,236)( 73,297)( 74,299)( 75,298)( 76,300)( 77,293)( 78,295)( 79,294)
( 80,296)( 81,289)( 82,291)( 83,290)( 84,292)( 85,309)( 86,311)( 87,310)
( 88,312)( 89,305)( 90,307)( 91,306)( 92,308)( 93,301)( 94,303)( 95,302)
( 96,304)( 97,321)( 98,323)( 99,322)(100,324)(101,317)(102,319)(103,318)
(104,320)(105,313)(106,315)(107,314)(108,316)(109,157)(110,159)(111,158)
(112,160)(113,165)(114,167)(115,166)(116,168)(117,161)(118,163)(119,162)
(120,164)(121,169)(122,171)(123,170)(124,172)(125,177)(126,179)(127,178)
(128,180)(129,173)(130,175)(131,174)(132,176)(133,145)(134,147)(135,146)
(136,148)(137,153)(138,155)(139,154)(140,156)(141,149)(142,151)(143,150)
(144,152)(181,189)(182,191)(183,190)(184,192)(186,187)(193,201)(194,203)
(195,202)(196,204)(198,199)(205,213)(206,215)(207,214)(208,216)(210,211);
s2 := Sym(324)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 30)
( 14, 29)( 15, 32)( 16, 31)( 17, 34)( 18, 33)( 19, 36)( 20, 35)( 21, 26)
( 22, 25)( 23, 28)( 24, 27)( 37, 74)( 38, 73)( 39, 76)( 40, 75)( 41, 78)
( 42, 77)( 43, 80)( 44, 79)( 45, 82)( 46, 81)( 47, 84)( 48, 83)( 49,102)
( 50,101)( 51,104)( 52,103)( 53,106)( 54,105)( 55,108)( 56,107)( 57, 98)
( 58, 97)( 59,100)( 60, 99)( 61, 94)( 62, 93)( 63, 96)( 64, 95)( 65, 86)
( 66, 85)( 67, 88)( 68, 87)( 69, 90)( 70, 89)( 71, 92)( 72, 91)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,138)(122,137)(123,140)
(124,139)(125,142)(126,141)(127,144)(128,143)(129,134)(130,133)(131,136)
(132,135)(145,182)(146,181)(147,184)(148,183)(149,186)(150,185)(151,188)
(152,187)(153,190)(154,189)(155,192)(156,191)(157,210)(158,209)(159,212)
(160,211)(161,214)(162,213)(163,216)(164,215)(165,206)(166,205)(167,208)
(168,207)(169,202)(170,201)(171,204)(172,203)(173,194)(174,193)(175,196)
(176,195)(177,198)(178,197)(179,200)(180,199)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,246)(230,245)(231,248)(232,247)(233,250)
(234,249)(235,252)(236,251)(237,242)(238,241)(239,244)(240,243)(253,290)
(254,289)(255,292)(256,291)(257,294)(258,293)(259,296)(260,295)(261,298)
(262,297)(263,300)(264,299)(265,318)(266,317)(267,320)(268,319)(269,322)
(270,321)(271,324)(272,323)(273,314)(274,313)(275,316)(276,315)(277,310)
(278,309)(279,312)(280,311)(281,302)(282,301)(283,304)(284,303)(285,306)
(286,305)(287,308)(288,307);
poly := sub<Sym(324)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >;
References : None.
to this polytope