include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,18,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,18,4}*1296b
if this polytope has a name.
Group : SmallGroup(1296,1787)
Rank : 4
Schlafli Type : {6,18,4}
Number of vertices, edges, etc : 9, 81, 54, 4
Order of s0s1s2s3 : 9
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,6,4}*432
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 13, 29)( 14, 30)( 15, 31)( 16, 32)( 17, 33)( 18, 34)( 19, 35)( 20, 36)
( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 37, 73)( 38, 74)( 39, 75)( 40, 76)
( 41, 77)( 42, 78)( 43, 79)( 44, 80)( 45, 81)( 46, 82)( 47, 83)( 48, 84)
( 49,101)( 50,102)( 51,103)( 52,104)( 53,105)( 54,106)( 55,107)( 56,108)
( 57, 97)( 58, 98)( 59, 99)( 60,100)( 61, 93)( 62, 94)( 63, 95)( 64, 96)
( 65, 85)( 66, 86)( 67, 87)( 68, 88)( 69, 89)( 70, 90)( 71, 91)( 72, 92)
(121,137)(122,138)(123,139)(124,140)(125,141)(126,142)(127,143)(128,144)
(129,133)(130,134)(131,135)(132,136)(145,181)(146,182)(147,183)(148,184)
(149,185)(150,186)(151,187)(152,188)(153,189)(154,190)(155,191)(156,192)
(157,209)(158,210)(159,211)(160,212)(161,213)(162,214)(163,215)(164,216)
(165,205)(166,206)(167,207)(168,208)(169,201)(170,202)(171,203)(172,204)
(173,193)(174,194)(175,195)(176,196)(177,197)(178,198)(179,199)(180,200)
(229,245)(230,246)(231,247)(232,248)(233,249)(234,250)(235,251)(236,252)
(237,241)(238,242)(239,243)(240,244)(253,289)(254,290)(255,291)(256,292)
(257,293)(258,294)(259,295)(260,296)(261,297)(262,298)(263,299)(264,300)
(265,317)(266,318)(267,319)(268,320)(269,321)(270,322)(271,323)(272,324)
(273,313)(274,314)(275,315)(276,316)(277,309)(278,310)(279,311)(280,312)
(281,301)(282,302)(283,303)(284,304)(285,305)(286,306)(287,307)(288,308);;
s1 := ( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)( 8, 47)
( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 49)( 14, 50)( 15, 52)( 16, 51)
( 17, 57)( 18, 58)( 19, 60)( 20, 59)( 21, 53)( 22, 54)( 23, 56)( 24, 55)
( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 69)( 30, 70)( 31, 72)( 32, 71)
( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 75, 76)( 77, 81)( 78, 82)( 79, 84)
( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 99,100)(101,105)
(102,106)(103,108)(104,107)(109,257)(110,258)(111,260)(112,259)(113,253)
(114,254)(115,256)(116,255)(117,261)(118,262)(119,264)(120,263)(121,269)
(122,270)(123,272)(124,271)(125,265)(126,266)(127,268)(128,267)(129,273)
(130,274)(131,276)(132,275)(133,281)(134,282)(135,284)(136,283)(137,277)
(138,278)(139,280)(140,279)(141,285)(142,286)(143,288)(144,287)(145,221)
(146,222)(147,224)(148,223)(149,217)(150,218)(151,220)(152,219)(153,225)
(154,226)(155,228)(156,227)(157,233)(158,234)(159,236)(160,235)(161,229)
(162,230)(163,232)(164,231)(165,237)(166,238)(167,240)(168,239)(169,245)
(170,246)(171,248)(172,247)(173,241)(174,242)(175,244)(176,243)(177,249)
(178,250)(179,252)(180,251)(181,293)(182,294)(183,296)(184,295)(185,289)
(186,290)(187,292)(188,291)(189,297)(190,298)(191,300)(192,299)(193,305)
(194,306)(195,308)(196,307)(197,301)(198,302)(199,304)(200,303)(201,309)
(202,310)(203,312)(204,311)(205,317)(206,318)(207,320)(208,319)(209,313)
(210,314)(211,316)(212,315)(213,321)(214,322)(215,324)(216,323);;
s2 := ( 1,109)( 2,112)( 3,111)( 4,110)( 5,117)( 6,120)( 7,119)( 8,118)
( 9,113)( 10,116)( 11,115)( 12,114)( 13,133)( 14,136)( 15,135)( 16,134)
( 17,141)( 18,144)( 19,143)( 20,142)( 21,137)( 22,140)( 23,139)( 24,138)
( 25,121)( 26,124)( 27,123)( 28,122)( 29,129)( 30,132)( 31,131)( 32,130)
( 33,125)( 34,128)( 35,127)( 36,126)( 37,157)( 38,160)( 39,159)( 40,158)
( 41,165)( 42,168)( 43,167)( 44,166)( 45,161)( 46,164)( 47,163)( 48,162)
( 49,145)( 50,148)( 51,147)( 52,146)( 53,153)( 54,156)( 55,155)( 56,154)
( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)( 64,170)
( 65,177)( 66,180)( 67,179)( 68,178)( 69,173)( 70,176)( 71,175)( 72,174)
( 73,209)( 74,212)( 75,211)( 76,210)( 77,205)( 78,208)( 79,207)( 80,206)
( 81,213)( 82,216)( 83,215)( 84,214)( 85,197)( 86,200)( 87,199)( 88,198)
( 89,193)( 90,196)( 91,195)( 92,194)( 93,201)( 94,204)( 95,203)( 96,202)
( 97,185)( 98,188)( 99,187)(100,186)(101,181)(102,184)(103,183)(104,182)
(105,189)(106,192)(107,191)(108,190)(217,221)(218,224)(219,223)(220,222)
(226,228)(229,245)(230,248)(231,247)(232,246)(233,241)(234,244)(235,243)
(236,242)(237,249)(238,252)(239,251)(240,250)(253,269)(254,272)(255,271)
(256,270)(257,265)(258,268)(259,267)(260,266)(261,273)(262,276)(263,275)
(264,274)(277,281)(278,284)(279,283)(280,282)(286,288)(289,321)(290,324)
(291,323)(292,322)(293,317)(294,320)(295,319)(296,318)(297,313)(298,316)
(299,315)(300,314)(301,309)(302,312)(303,311)(304,310)(306,308);;
s3 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)( 31, 32)
( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)( 95, 96)
( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)(127,128)
(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)(143,144)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)(159,160)
(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)(175,176)
(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)(207,208)
(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)(239,240)
(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)(271,272)
(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)(287,288)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)(303,304)
(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)(319,320)
(321,322)(323,324);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(324)!( 13, 29)( 14, 30)( 15, 31)( 16, 32)( 17, 33)( 18, 34)( 19, 35)
( 20, 36)( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 37, 73)( 38, 74)( 39, 75)
( 40, 76)( 41, 77)( 42, 78)( 43, 79)( 44, 80)( 45, 81)( 46, 82)( 47, 83)
( 48, 84)( 49,101)( 50,102)( 51,103)( 52,104)( 53,105)( 54,106)( 55,107)
( 56,108)( 57, 97)( 58, 98)( 59, 99)( 60,100)( 61, 93)( 62, 94)( 63, 95)
( 64, 96)( 65, 85)( 66, 86)( 67, 87)( 68, 88)( 69, 89)( 70, 90)( 71, 91)
( 72, 92)(121,137)(122,138)(123,139)(124,140)(125,141)(126,142)(127,143)
(128,144)(129,133)(130,134)(131,135)(132,136)(145,181)(146,182)(147,183)
(148,184)(149,185)(150,186)(151,187)(152,188)(153,189)(154,190)(155,191)
(156,192)(157,209)(158,210)(159,211)(160,212)(161,213)(162,214)(163,215)
(164,216)(165,205)(166,206)(167,207)(168,208)(169,201)(170,202)(171,203)
(172,204)(173,193)(174,194)(175,195)(176,196)(177,197)(178,198)(179,199)
(180,200)(229,245)(230,246)(231,247)(232,248)(233,249)(234,250)(235,251)
(236,252)(237,241)(238,242)(239,243)(240,244)(253,289)(254,290)(255,291)
(256,292)(257,293)(258,294)(259,295)(260,296)(261,297)(262,298)(263,299)
(264,300)(265,317)(266,318)(267,319)(268,320)(269,321)(270,322)(271,323)
(272,324)(273,313)(274,314)(275,315)(276,316)(277,309)(278,310)(279,311)
(280,312)(281,301)(282,302)(283,303)(284,304)(285,305)(286,306)(287,307)
(288,308);
s1 := Sym(324)!( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)
( 8, 47)( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 49)( 14, 50)( 15, 52)
( 16, 51)( 17, 57)( 18, 58)( 19, 60)( 20, 59)( 21, 53)( 22, 54)( 23, 56)
( 24, 55)( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 69)( 30, 70)( 31, 72)
( 32, 71)( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 75, 76)( 77, 81)( 78, 82)
( 79, 84)( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 99,100)
(101,105)(102,106)(103,108)(104,107)(109,257)(110,258)(111,260)(112,259)
(113,253)(114,254)(115,256)(116,255)(117,261)(118,262)(119,264)(120,263)
(121,269)(122,270)(123,272)(124,271)(125,265)(126,266)(127,268)(128,267)
(129,273)(130,274)(131,276)(132,275)(133,281)(134,282)(135,284)(136,283)
(137,277)(138,278)(139,280)(140,279)(141,285)(142,286)(143,288)(144,287)
(145,221)(146,222)(147,224)(148,223)(149,217)(150,218)(151,220)(152,219)
(153,225)(154,226)(155,228)(156,227)(157,233)(158,234)(159,236)(160,235)
(161,229)(162,230)(163,232)(164,231)(165,237)(166,238)(167,240)(168,239)
(169,245)(170,246)(171,248)(172,247)(173,241)(174,242)(175,244)(176,243)
(177,249)(178,250)(179,252)(180,251)(181,293)(182,294)(183,296)(184,295)
(185,289)(186,290)(187,292)(188,291)(189,297)(190,298)(191,300)(192,299)
(193,305)(194,306)(195,308)(196,307)(197,301)(198,302)(199,304)(200,303)
(201,309)(202,310)(203,312)(204,311)(205,317)(206,318)(207,320)(208,319)
(209,313)(210,314)(211,316)(212,315)(213,321)(214,322)(215,324)(216,323);
s2 := Sym(324)!( 1,109)( 2,112)( 3,111)( 4,110)( 5,117)( 6,120)( 7,119)
( 8,118)( 9,113)( 10,116)( 11,115)( 12,114)( 13,133)( 14,136)( 15,135)
( 16,134)( 17,141)( 18,144)( 19,143)( 20,142)( 21,137)( 22,140)( 23,139)
( 24,138)( 25,121)( 26,124)( 27,123)( 28,122)( 29,129)( 30,132)( 31,131)
( 32,130)( 33,125)( 34,128)( 35,127)( 36,126)( 37,157)( 38,160)( 39,159)
( 40,158)( 41,165)( 42,168)( 43,167)( 44,166)( 45,161)( 46,164)( 47,163)
( 48,162)( 49,145)( 50,148)( 51,147)( 52,146)( 53,153)( 54,156)( 55,155)
( 56,154)( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)
( 64,170)( 65,177)( 66,180)( 67,179)( 68,178)( 69,173)( 70,176)( 71,175)
( 72,174)( 73,209)( 74,212)( 75,211)( 76,210)( 77,205)( 78,208)( 79,207)
( 80,206)( 81,213)( 82,216)( 83,215)( 84,214)( 85,197)( 86,200)( 87,199)
( 88,198)( 89,193)( 90,196)( 91,195)( 92,194)( 93,201)( 94,204)( 95,203)
( 96,202)( 97,185)( 98,188)( 99,187)(100,186)(101,181)(102,184)(103,183)
(104,182)(105,189)(106,192)(107,191)(108,190)(217,221)(218,224)(219,223)
(220,222)(226,228)(229,245)(230,248)(231,247)(232,246)(233,241)(234,244)
(235,243)(236,242)(237,249)(238,252)(239,251)(240,250)(253,269)(254,272)
(255,271)(256,270)(257,265)(258,268)(259,267)(260,266)(261,273)(262,276)
(263,275)(264,274)(277,281)(278,284)(279,283)(280,282)(286,288)(289,321)
(290,324)(291,323)(292,322)(293,317)(294,320)(295,319)(296,318)(297,313)
(298,316)(299,315)(300,314)(301,309)(302,312)(303,311)(304,310)(306,308);
s3 := Sym(324)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 26)( 27, 28)( 29, 30)
( 31, 32)( 33, 34)( 35, 36)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 86)( 87, 88)( 89, 90)( 91, 92)( 93, 94)
( 95, 96)( 97, 98)( 99,100)(101,102)(103,104)(105,106)(107,108)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,122)(123,124)(125,126)
(127,128)(129,130)(131,132)(133,134)(135,136)(137,138)(139,140)(141,142)
(143,144)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,158)
(159,160)(161,162)(163,164)(165,166)(167,168)(169,170)(171,172)(173,174)
(175,176)(177,178)(179,180)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,194)(195,196)(197,198)(199,200)(201,202)(203,204)(205,206)
(207,208)(209,210)(211,212)(213,214)(215,216)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,230)(231,232)(233,234)(235,236)(237,238)
(239,240)(241,242)(243,244)(245,246)(247,248)(249,250)(251,252)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,266)(267,268)(269,270)
(271,272)(273,274)(275,276)(277,278)(279,280)(281,282)(283,284)(285,286)
(287,288)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,302)
(303,304)(305,306)(307,308)(309,310)(311,312)(313,314)(315,316)(317,318)
(319,320)(321,322)(323,324);
poly := sub<Sym(324)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0 >;
References : None.
to this polytope