include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,18}*1296j
if this polytope has a name.
Group : SmallGroup(1296,1787)
Rank : 3
Schlafli Type : {12,18}
Number of vertices, edges, etc : 36, 324, 54
Order of s0s1s2 : 9
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {12,6}*432d
4-fold quotients : {6,18}*324b
9-fold quotients : {12,6}*144d
12-fold quotients : {6,6}*108
27-fold quotients : {4,6}*48b
54-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 31)( 14, 32)
( 15, 29)( 16, 30)( 17, 35)( 18, 36)( 19, 33)( 20, 34)( 21, 27)( 22, 28)
( 23, 25)( 24, 26)( 37, 75)( 38, 76)( 39, 73)( 40, 74)( 41, 79)( 42, 80)
( 43, 77)( 44, 78)( 45, 83)( 46, 84)( 47, 81)( 48, 82)( 49,103)( 50,104)
( 51,101)( 52,102)( 53,107)( 54,108)( 55,105)( 56,106)( 57, 99)( 58,100)
( 59, 97)( 60, 98)( 61, 95)( 62, 96)( 63, 93)( 64, 94)( 65, 87)( 66, 88)
( 67, 85)( 68, 86)( 69, 91)( 70, 92)( 71, 89)( 72, 90)(109,111)(110,112)
(113,115)(114,116)(117,119)(118,120)(121,139)(122,140)(123,137)(124,138)
(125,143)(126,144)(127,141)(128,142)(129,135)(130,136)(131,133)(132,134)
(145,183)(146,184)(147,181)(148,182)(149,187)(150,188)(151,185)(152,186)
(153,191)(154,192)(155,189)(156,190)(157,211)(158,212)(159,209)(160,210)
(161,215)(162,216)(163,213)(164,214)(165,207)(166,208)(167,205)(168,206)
(169,203)(170,204)(171,201)(172,202)(173,195)(174,196)(175,193)(176,194)
(177,199)(178,200)(179,197)(180,198)(217,219)(218,220)(221,223)(222,224)
(225,227)(226,228)(229,247)(230,248)(231,245)(232,246)(233,251)(234,252)
(235,249)(236,250)(237,243)(238,244)(239,241)(240,242)(253,291)(254,292)
(255,289)(256,290)(257,295)(258,296)(259,293)(260,294)(261,299)(262,300)
(263,297)(264,298)(265,319)(266,320)(267,317)(268,318)(269,323)(270,324)
(271,321)(272,322)(273,315)(274,316)(275,313)(276,314)(277,311)(278,312)
(279,309)(280,310)(281,303)(282,304)(283,301)(284,302)(285,307)(286,308)
(287,305)(288,306);;
s1 := ( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)( 8, 47)
( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 49)( 14, 50)( 15, 52)( 16, 51)
( 17, 57)( 18, 58)( 19, 60)( 20, 59)( 21, 53)( 22, 54)( 23, 56)( 24, 55)
( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 69)( 30, 70)( 31, 72)( 32, 71)
( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 75, 76)( 77, 81)( 78, 82)( 79, 84)
( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 99,100)(101,105)
(102,106)(103,108)(104,107)(109,257)(110,258)(111,260)(112,259)(113,253)
(114,254)(115,256)(116,255)(117,261)(118,262)(119,264)(120,263)(121,269)
(122,270)(123,272)(124,271)(125,265)(126,266)(127,268)(128,267)(129,273)
(130,274)(131,276)(132,275)(133,281)(134,282)(135,284)(136,283)(137,277)
(138,278)(139,280)(140,279)(141,285)(142,286)(143,288)(144,287)(145,221)
(146,222)(147,224)(148,223)(149,217)(150,218)(151,220)(152,219)(153,225)
(154,226)(155,228)(156,227)(157,233)(158,234)(159,236)(160,235)(161,229)
(162,230)(163,232)(164,231)(165,237)(166,238)(167,240)(168,239)(169,245)
(170,246)(171,248)(172,247)(173,241)(174,242)(175,244)(176,243)(177,249)
(178,250)(179,252)(180,251)(181,293)(182,294)(183,296)(184,295)(185,289)
(186,290)(187,292)(188,291)(189,297)(190,298)(191,300)(192,299)(193,305)
(194,306)(195,308)(196,307)(197,301)(198,302)(199,304)(200,303)(201,309)
(202,310)(203,312)(204,311)(205,317)(206,318)(207,320)(208,319)(209,313)
(210,314)(211,316)(212,315)(213,321)(214,322)(215,324)(216,323);;
s2 := ( 1,109)( 2,112)( 3,111)( 4,110)( 5,117)( 6,120)( 7,119)( 8,118)
( 9,113)( 10,116)( 11,115)( 12,114)( 13,133)( 14,136)( 15,135)( 16,134)
( 17,141)( 18,144)( 19,143)( 20,142)( 21,137)( 22,140)( 23,139)( 24,138)
( 25,121)( 26,124)( 27,123)( 28,122)( 29,129)( 30,132)( 31,131)( 32,130)
( 33,125)( 34,128)( 35,127)( 36,126)( 37,157)( 38,160)( 39,159)( 40,158)
( 41,165)( 42,168)( 43,167)( 44,166)( 45,161)( 46,164)( 47,163)( 48,162)
( 49,145)( 50,148)( 51,147)( 52,146)( 53,153)( 54,156)( 55,155)( 56,154)
( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)( 64,170)
( 65,177)( 66,180)( 67,179)( 68,178)( 69,173)( 70,176)( 71,175)( 72,174)
( 73,209)( 74,212)( 75,211)( 76,210)( 77,205)( 78,208)( 79,207)( 80,206)
( 81,213)( 82,216)( 83,215)( 84,214)( 85,197)( 86,200)( 87,199)( 88,198)
( 89,193)( 90,196)( 91,195)( 92,194)( 93,201)( 94,204)( 95,203)( 96,202)
( 97,185)( 98,188)( 99,187)(100,186)(101,181)(102,184)(103,183)(104,182)
(105,189)(106,192)(107,191)(108,190)(217,221)(218,224)(219,223)(220,222)
(226,228)(229,245)(230,248)(231,247)(232,246)(233,241)(234,244)(235,243)
(236,242)(237,249)(238,252)(239,251)(240,250)(253,269)(254,272)(255,271)
(256,270)(257,265)(258,268)(259,267)(260,266)(261,273)(262,276)(263,275)
(264,274)(277,281)(278,284)(279,283)(280,282)(286,288)(289,321)(290,324)
(291,323)(292,322)(293,317)(294,320)(295,319)(296,318)(297,313)(298,316)
(299,315)(300,314)(301,309)(302,312)(303,311)(304,310)(306,308);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0,
s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(324)!( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9, 11)( 10, 12)( 13, 31)
( 14, 32)( 15, 29)( 16, 30)( 17, 35)( 18, 36)( 19, 33)( 20, 34)( 21, 27)
( 22, 28)( 23, 25)( 24, 26)( 37, 75)( 38, 76)( 39, 73)( 40, 74)( 41, 79)
( 42, 80)( 43, 77)( 44, 78)( 45, 83)( 46, 84)( 47, 81)( 48, 82)( 49,103)
( 50,104)( 51,101)( 52,102)( 53,107)( 54,108)( 55,105)( 56,106)( 57, 99)
( 58,100)( 59, 97)( 60, 98)( 61, 95)( 62, 96)( 63, 93)( 64, 94)( 65, 87)
( 66, 88)( 67, 85)( 68, 86)( 69, 91)( 70, 92)( 71, 89)( 72, 90)(109,111)
(110,112)(113,115)(114,116)(117,119)(118,120)(121,139)(122,140)(123,137)
(124,138)(125,143)(126,144)(127,141)(128,142)(129,135)(130,136)(131,133)
(132,134)(145,183)(146,184)(147,181)(148,182)(149,187)(150,188)(151,185)
(152,186)(153,191)(154,192)(155,189)(156,190)(157,211)(158,212)(159,209)
(160,210)(161,215)(162,216)(163,213)(164,214)(165,207)(166,208)(167,205)
(168,206)(169,203)(170,204)(171,201)(172,202)(173,195)(174,196)(175,193)
(176,194)(177,199)(178,200)(179,197)(180,198)(217,219)(218,220)(221,223)
(222,224)(225,227)(226,228)(229,247)(230,248)(231,245)(232,246)(233,251)
(234,252)(235,249)(236,250)(237,243)(238,244)(239,241)(240,242)(253,291)
(254,292)(255,289)(256,290)(257,295)(258,296)(259,293)(260,294)(261,299)
(262,300)(263,297)(264,298)(265,319)(266,320)(267,317)(268,318)(269,323)
(270,324)(271,321)(272,322)(273,315)(274,316)(275,313)(276,314)(277,311)
(278,312)(279,309)(280,310)(281,303)(282,304)(283,301)(284,302)(285,307)
(286,308)(287,305)(288,306);
s1 := Sym(324)!( 1, 37)( 2, 38)( 3, 40)( 4, 39)( 5, 45)( 6, 46)( 7, 48)
( 8, 47)( 9, 41)( 10, 42)( 11, 44)( 12, 43)( 13, 49)( 14, 50)( 15, 52)
( 16, 51)( 17, 57)( 18, 58)( 19, 60)( 20, 59)( 21, 53)( 22, 54)( 23, 56)
( 24, 55)( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 69)( 30, 70)( 31, 72)
( 32, 71)( 33, 65)( 34, 66)( 35, 68)( 36, 67)( 75, 76)( 77, 81)( 78, 82)
( 79, 84)( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)( 99,100)
(101,105)(102,106)(103,108)(104,107)(109,257)(110,258)(111,260)(112,259)
(113,253)(114,254)(115,256)(116,255)(117,261)(118,262)(119,264)(120,263)
(121,269)(122,270)(123,272)(124,271)(125,265)(126,266)(127,268)(128,267)
(129,273)(130,274)(131,276)(132,275)(133,281)(134,282)(135,284)(136,283)
(137,277)(138,278)(139,280)(140,279)(141,285)(142,286)(143,288)(144,287)
(145,221)(146,222)(147,224)(148,223)(149,217)(150,218)(151,220)(152,219)
(153,225)(154,226)(155,228)(156,227)(157,233)(158,234)(159,236)(160,235)
(161,229)(162,230)(163,232)(164,231)(165,237)(166,238)(167,240)(168,239)
(169,245)(170,246)(171,248)(172,247)(173,241)(174,242)(175,244)(176,243)
(177,249)(178,250)(179,252)(180,251)(181,293)(182,294)(183,296)(184,295)
(185,289)(186,290)(187,292)(188,291)(189,297)(190,298)(191,300)(192,299)
(193,305)(194,306)(195,308)(196,307)(197,301)(198,302)(199,304)(200,303)
(201,309)(202,310)(203,312)(204,311)(205,317)(206,318)(207,320)(208,319)
(209,313)(210,314)(211,316)(212,315)(213,321)(214,322)(215,324)(216,323);
s2 := Sym(324)!( 1,109)( 2,112)( 3,111)( 4,110)( 5,117)( 6,120)( 7,119)
( 8,118)( 9,113)( 10,116)( 11,115)( 12,114)( 13,133)( 14,136)( 15,135)
( 16,134)( 17,141)( 18,144)( 19,143)( 20,142)( 21,137)( 22,140)( 23,139)
( 24,138)( 25,121)( 26,124)( 27,123)( 28,122)( 29,129)( 30,132)( 31,131)
( 32,130)( 33,125)( 34,128)( 35,127)( 36,126)( 37,157)( 38,160)( 39,159)
( 40,158)( 41,165)( 42,168)( 43,167)( 44,166)( 45,161)( 46,164)( 47,163)
( 48,162)( 49,145)( 50,148)( 51,147)( 52,146)( 53,153)( 54,156)( 55,155)
( 56,154)( 57,149)( 58,152)( 59,151)( 60,150)( 61,169)( 62,172)( 63,171)
( 64,170)( 65,177)( 66,180)( 67,179)( 68,178)( 69,173)( 70,176)( 71,175)
( 72,174)( 73,209)( 74,212)( 75,211)( 76,210)( 77,205)( 78,208)( 79,207)
( 80,206)( 81,213)( 82,216)( 83,215)( 84,214)( 85,197)( 86,200)( 87,199)
( 88,198)( 89,193)( 90,196)( 91,195)( 92,194)( 93,201)( 94,204)( 95,203)
( 96,202)( 97,185)( 98,188)( 99,187)(100,186)(101,181)(102,184)(103,183)
(104,182)(105,189)(106,192)(107,191)(108,190)(217,221)(218,224)(219,223)
(220,222)(226,228)(229,245)(230,248)(231,247)(232,246)(233,241)(234,244)
(235,243)(236,242)(237,249)(238,252)(239,251)(240,250)(253,269)(254,272)
(255,271)(256,270)(257,265)(258,268)(259,267)(260,266)(261,273)(262,276)
(263,275)(264,274)(277,281)(278,284)(279,283)(280,282)(286,288)(289,321)
(290,324)(291,323)(292,322)(293,317)(294,320)(295,319)(296,318)(297,313)
(298,316)(299,315)(300,314)(301,309)(302,312)(303,311)(304,310)(306,308);
poly := sub<Sym(324)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0,
s0*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope