Polytope of Type {6,6,9,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,9,2}*1296a
if this polytope has a name.
Group : SmallGroup(1296,1858)
Rank : 5
Schlafli Type : {6,6,9,2}
Number of vertices, edges, etc : 6, 18, 27, 9, 2
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,6,9,2}*648
   3-fold quotients : {6,2,9,2}*432, {6,6,3,2}*432a
   6-fold quotients : {3,2,9,2}*216, {3,6,3,2}*216
   9-fold quotients : {2,2,9,2}*144, {6,2,3,2}*144
   18-fold quotients : {3,2,3,2}*72
   27-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)( 14, 24)
( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)
( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)( 68, 78)
( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)( 91,100)
( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)( 99,107)
(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)(122,132)
(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)(145,154)
(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)(153,161);;
s1 := (  1, 91)(  2, 93)(  3, 92)(  4, 94)(  5, 96)(  6, 95)(  7, 97)(  8, 99)
(  9, 98)( 10, 82)( 11, 84)( 12, 83)( 13, 85)( 14, 87)( 15, 86)( 16, 88)
( 17, 90)( 18, 89)( 19,100)( 20,102)( 21,101)( 22,103)( 23,105)( 24,104)
( 25,106)( 26,108)( 27,107)( 28,118)( 29,120)( 30,119)( 31,121)( 32,123)
( 33,122)( 34,124)( 35,126)( 36,125)( 37,109)( 38,111)( 39,110)( 40,112)
( 41,114)( 42,113)( 43,115)( 44,117)( 45,116)( 46,127)( 47,129)( 48,128)
( 49,130)( 50,132)( 51,131)( 52,133)( 53,135)( 54,134)( 55,145)( 56,147)
( 57,146)( 58,148)( 59,150)( 60,149)( 61,151)( 62,153)( 63,152)( 64,136)
( 65,138)( 66,137)( 67,139)( 68,141)( 69,140)( 70,142)( 71,144)( 72,143)
( 73,154)( 74,156)( 75,155)( 76,157)( 77,159)( 78,158)( 79,160)( 80,162)
( 81,161);;
s2 := (  1, 28)(  2, 30)(  3, 29)(  4, 34)(  5, 36)(  6, 35)(  7, 31)(  8, 33)
(  9, 32)( 10, 38)( 11, 37)( 12, 39)( 13, 44)( 14, 43)( 15, 45)( 16, 41)
( 17, 40)( 18, 42)( 19, 48)( 20, 47)( 21, 46)( 22, 54)( 23, 53)( 24, 52)
( 25, 51)( 26, 50)( 27, 49)( 55, 61)( 56, 63)( 57, 62)( 59, 60)( 64, 71)
( 65, 70)( 66, 72)( 67, 68)( 73, 81)( 74, 80)( 75, 79)( 76, 78)( 82,109)
( 83,111)( 84,110)( 85,115)( 86,117)( 87,116)( 88,112)( 89,114)( 90,113)
( 91,119)( 92,118)( 93,120)( 94,125)( 95,124)( 96,126)( 97,122)( 98,121)
( 99,123)(100,129)(101,128)(102,127)(103,135)(104,134)(105,133)(106,132)
(107,131)(108,130)(136,142)(137,144)(138,143)(140,141)(145,152)(146,151)
(147,153)(148,149)(154,162)(155,161)(156,160)(157,159);;
s3 := (  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 61)( 29, 63)( 30, 62)( 31, 58)
( 32, 60)( 33, 59)( 34, 55)( 35, 57)( 36, 56)( 37, 70)( 38, 72)( 39, 71)
( 40, 67)( 41, 69)( 42, 68)( 43, 64)( 44, 66)( 45, 65)( 46, 79)( 47, 81)
( 48, 80)( 49, 76)( 50, 78)( 51, 77)( 52, 73)( 53, 75)( 54, 74)( 83, 84)
( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)
(103,106)(104,108)(105,107)(109,142)(110,144)(111,143)(112,139)(113,141)
(114,140)(115,136)(116,138)(117,137)(118,151)(119,153)(120,152)(121,148)
(122,150)(123,149)(124,145)(125,147)(126,146)(127,160)(128,162)(129,161)
(130,157)(131,159)(132,158)(133,154)(134,156)(135,155);;
s4 := (163,164);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(164)!(  2,  3)(  5,  6)(  8,  9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)
( 14, 24)( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)
( 45, 53)( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)
( 68, 78)( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)
( 91,100)( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)
( 99,107)(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)
(122,132)(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)
(145,154)(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)
(153,161);
s1 := Sym(164)!(  1, 91)(  2, 93)(  3, 92)(  4, 94)(  5, 96)(  6, 95)(  7, 97)
(  8, 99)(  9, 98)( 10, 82)( 11, 84)( 12, 83)( 13, 85)( 14, 87)( 15, 86)
( 16, 88)( 17, 90)( 18, 89)( 19,100)( 20,102)( 21,101)( 22,103)( 23,105)
( 24,104)( 25,106)( 26,108)( 27,107)( 28,118)( 29,120)( 30,119)( 31,121)
( 32,123)( 33,122)( 34,124)( 35,126)( 36,125)( 37,109)( 38,111)( 39,110)
( 40,112)( 41,114)( 42,113)( 43,115)( 44,117)( 45,116)( 46,127)( 47,129)
( 48,128)( 49,130)( 50,132)( 51,131)( 52,133)( 53,135)( 54,134)( 55,145)
( 56,147)( 57,146)( 58,148)( 59,150)( 60,149)( 61,151)( 62,153)( 63,152)
( 64,136)( 65,138)( 66,137)( 67,139)( 68,141)( 69,140)( 70,142)( 71,144)
( 72,143)( 73,154)( 74,156)( 75,155)( 76,157)( 77,159)( 78,158)( 79,160)
( 80,162)( 81,161);
s2 := Sym(164)!(  1, 28)(  2, 30)(  3, 29)(  4, 34)(  5, 36)(  6, 35)(  7, 31)
(  8, 33)(  9, 32)( 10, 38)( 11, 37)( 12, 39)( 13, 44)( 14, 43)( 15, 45)
( 16, 41)( 17, 40)( 18, 42)( 19, 48)( 20, 47)( 21, 46)( 22, 54)( 23, 53)
( 24, 52)( 25, 51)( 26, 50)( 27, 49)( 55, 61)( 56, 63)( 57, 62)( 59, 60)
( 64, 71)( 65, 70)( 66, 72)( 67, 68)( 73, 81)( 74, 80)( 75, 79)( 76, 78)
( 82,109)( 83,111)( 84,110)( 85,115)( 86,117)( 87,116)( 88,112)( 89,114)
( 90,113)( 91,119)( 92,118)( 93,120)( 94,125)( 95,124)( 96,126)( 97,122)
( 98,121)( 99,123)(100,129)(101,128)(102,127)(103,135)(104,134)(105,133)
(106,132)(107,131)(108,130)(136,142)(137,144)(138,143)(140,141)(145,152)
(146,151)(147,153)(148,149)(154,162)(155,161)(156,160)(157,159);
s3 := Sym(164)!(  2,  3)(  4,  7)(  5,  9)(  6,  8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 61)( 29, 63)( 30, 62)
( 31, 58)( 32, 60)( 33, 59)( 34, 55)( 35, 57)( 36, 56)( 37, 70)( 38, 72)
( 39, 71)( 40, 67)( 41, 69)( 42, 68)( 43, 64)( 44, 66)( 45, 65)( 46, 79)
( 47, 81)( 48, 80)( 49, 76)( 50, 78)( 51, 77)( 52, 73)( 53, 75)( 54, 74)
( 83, 84)( 85, 88)( 86, 90)( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)
(101,102)(103,106)(104,108)(105,107)(109,142)(110,144)(111,143)(112,139)
(113,141)(114,140)(115,136)(116,138)(117,137)(118,151)(119,153)(120,152)
(121,148)(122,150)(123,149)(124,145)(125,147)(126,146)(127,160)(128,162)
(129,161)(130,157)(131,159)(132,158)(133,154)(134,156)(135,155);
s4 := Sym(164)!(163,164);
poly := sub<Sym(164)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope