include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,27,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,27,2,2}*1296
if this polytope has a name.
Group : SmallGroup(1296,1859)
Rank : 5
Schlafli Type : {6,27,2,2}
Number of vertices, edges, etc : 6, 81, 27, 2, 2
Order of s0s1s2s3s4 : 54
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,27,2,2}*432, {6,9,2,2}*432
9-fold quotients : {2,9,2,2}*144, {6,3,2,2}*144
27-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,46)
(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(64,73)(65,74)(66,75)
(67,76)(68,77)(69,78)(70,79)(71,80)(72,81);;
s1 := ( 1,10)( 2,12)( 3,11)( 4,17)( 5,16)( 6,18)( 7,14)( 8,13)( 9,15)(20,21)
(22,26)(23,25)(24,27)(28,67)(29,69)(30,68)(31,64)(32,66)(33,65)(34,71)(35,70)
(36,72)(37,58)(38,60)(39,59)(40,55)(41,57)(42,56)(43,62)(44,61)(45,63)(46,76)
(47,78)(48,77)(49,73)(50,75)(51,74)(52,80)(53,79)(54,81);;
s2 := ( 1,28)( 2,30)( 3,29)( 4,35)( 5,34)( 6,36)( 7,32)( 8,31)( 9,33)(10,46)
(11,48)(12,47)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,37)(20,39)(21,38)
(22,44)(23,43)(24,45)(25,41)(26,40)(27,42)(55,58)(56,60)(57,59)(61,62)(64,76)
(65,78)(66,77)(67,73)(68,75)(69,74)(70,80)(71,79)(72,81);;
s3 := (82,83);;
s4 := (84,85);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(85)!(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)
(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(64,73)(65,74)
(66,75)(67,76)(68,77)(69,78)(70,79)(71,80)(72,81);
s1 := Sym(85)!( 1,10)( 2,12)( 3,11)( 4,17)( 5,16)( 6,18)( 7,14)( 8,13)( 9,15)
(20,21)(22,26)(23,25)(24,27)(28,67)(29,69)(30,68)(31,64)(32,66)(33,65)(34,71)
(35,70)(36,72)(37,58)(38,60)(39,59)(40,55)(41,57)(42,56)(43,62)(44,61)(45,63)
(46,76)(47,78)(48,77)(49,73)(50,75)(51,74)(52,80)(53,79)(54,81);
s2 := Sym(85)!( 1,28)( 2,30)( 3,29)( 4,35)( 5,34)( 6,36)( 7,32)( 8,31)( 9,33)
(10,46)(11,48)(12,47)(13,53)(14,52)(15,54)(16,50)(17,49)(18,51)(19,37)(20,39)
(21,38)(22,44)(23,43)(24,45)(25,41)(26,40)(27,42)(55,58)(56,60)(57,59)(61,62)
(64,76)(65,78)(66,77)(67,73)(68,75)(69,74)(70,80)(71,79)(72,81);
s3 := Sym(85)!(82,83);
s4 := Sym(85)!(84,85);
poly := sub<Sym(85)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope