include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,18,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,18,6}*1296c
if this polytope has a name.
Group : SmallGroup(1296,1860)
Rank : 4
Schlafli Type : {2,18,6}
Number of vertices, edges, etc : 2, 54, 162, 18
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,9,6}*648c
3-fold quotients : {2,6,6}*432c
6-fold quotients : {2,3,6}*216
9-fold quotients : {2,6,6}*144c
18-fold quotients : {2,3,6}*72
27-fold quotients : {2,6,2}*48
54-fold quotients : {2,3,2}*24
81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 8)( 9, 10)( 12, 21)( 13, 23)( 14, 22)( 15, 26)( 16, 25)
( 17, 24)( 18, 28)( 19, 27)( 20, 29)( 30, 57)( 31, 59)( 32, 58)( 33, 62)
( 34, 61)( 35, 60)( 36, 64)( 37, 63)( 38, 65)( 39, 75)( 40, 77)( 41, 76)
( 42, 80)( 43, 79)( 44, 78)( 45, 82)( 46, 81)( 47, 83)( 48, 66)( 49, 68)
( 50, 67)( 51, 71)( 52, 70)( 53, 69)( 54, 73)( 55, 72)( 56, 74)( 85, 86)
( 87, 89)( 90, 91)( 93,102)( 94,104)( 95,103)( 96,107)( 97,106)( 98,105)
( 99,109)(100,108)(101,110)(111,138)(112,140)(113,139)(114,143)(115,142)
(116,141)(117,145)(118,144)(119,146)(120,156)(121,158)(122,157)(123,161)
(124,160)(125,159)(126,163)(127,162)(128,164)(129,147)(130,149)(131,148)
(132,152)(133,151)(134,150)(135,154)(136,153)(137,155);;
s2 := ( 3,150)( 4,152)( 5,151)( 6,153)( 7,155)( 8,154)( 9,147)( 10,149)
( 11,148)( 12,144)( 13,146)( 14,145)( 15,138)( 16,140)( 17,139)( 18,141)
( 19,143)( 20,142)( 21,158)( 22,157)( 23,156)( 24,161)( 25,160)( 26,159)
( 27,164)( 28,163)( 29,162)( 30,123)( 31,125)( 32,124)( 33,126)( 34,128)
( 35,127)( 36,120)( 37,122)( 38,121)( 39,117)( 40,119)( 41,118)( 42,111)
( 43,113)( 44,112)( 45,114)( 46,116)( 47,115)( 48,131)( 49,130)( 50,129)
( 51,134)( 52,133)( 53,132)( 54,137)( 55,136)( 56,135)( 57, 96)( 58, 98)
( 59, 97)( 60, 99)( 61,101)( 62,100)( 63, 93)( 64, 95)( 65, 94)( 66, 90)
( 67, 92)( 68, 91)( 69, 84)( 70, 86)( 71, 85)( 72, 87)( 73, 89)( 74, 88)
( 75,104)( 76,103)( 77,102)( 78,107)( 79,106)( 80,105)( 81,110)( 82,109)
( 83,108);;
s3 := ( 6, 10)( 7, 11)( 8, 9)( 12, 21)( 13, 22)( 14, 23)( 15, 28)( 16, 29)
( 17, 27)( 18, 26)( 19, 24)( 20, 25)( 33, 37)( 34, 38)( 35, 36)( 39, 48)
( 40, 49)( 41, 50)( 42, 55)( 43, 56)( 44, 54)( 45, 53)( 46, 51)( 47, 52)
( 60, 64)( 61, 65)( 62, 63)( 66, 75)( 67, 76)( 68, 77)( 69, 82)( 70, 83)
( 71, 81)( 72, 80)( 73, 78)( 74, 79)( 87, 91)( 88, 92)( 89, 90)( 93,102)
( 94,103)( 95,104)( 96,109)( 97,110)( 98,108)( 99,107)(100,105)(101,106)
(114,118)(115,119)(116,117)(120,129)(121,130)(122,131)(123,136)(124,137)
(125,135)(126,134)(127,132)(128,133)(141,145)(142,146)(143,144)(147,156)
(148,157)(149,158)(150,163)(151,164)(152,162)(153,161)(154,159)(155,160);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(164)!(1,2);
s1 := Sym(164)!( 4, 5)( 6, 8)( 9, 10)( 12, 21)( 13, 23)( 14, 22)( 15, 26)
( 16, 25)( 17, 24)( 18, 28)( 19, 27)( 20, 29)( 30, 57)( 31, 59)( 32, 58)
( 33, 62)( 34, 61)( 35, 60)( 36, 64)( 37, 63)( 38, 65)( 39, 75)( 40, 77)
( 41, 76)( 42, 80)( 43, 79)( 44, 78)( 45, 82)( 46, 81)( 47, 83)( 48, 66)
( 49, 68)( 50, 67)( 51, 71)( 52, 70)( 53, 69)( 54, 73)( 55, 72)( 56, 74)
( 85, 86)( 87, 89)( 90, 91)( 93,102)( 94,104)( 95,103)( 96,107)( 97,106)
( 98,105)( 99,109)(100,108)(101,110)(111,138)(112,140)(113,139)(114,143)
(115,142)(116,141)(117,145)(118,144)(119,146)(120,156)(121,158)(122,157)
(123,161)(124,160)(125,159)(126,163)(127,162)(128,164)(129,147)(130,149)
(131,148)(132,152)(133,151)(134,150)(135,154)(136,153)(137,155);
s2 := Sym(164)!( 3,150)( 4,152)( 5,151)( 6,153)( 7,155)( 8,154)( 9,147)
( 10,149)( 11,148)( 12,144)( 13,146)( 14,145)( 15,138)( 16,140)( 17,139)
( 18,141)( 19,143)( 20,142)( 21,158)( 22,157)( 23,156)( 24,161)( 25,160)
( 26,159)( 27,164)( 28,163)( 29,162)( 30,123)( 31,125)( 32,124)( 33,126)
( 34,128)( 35,127)( 36,120)( 37,122)( 38,121)( 39,117)( 40,119)( 41,118)
( 42,111)( 43,113)( 44,112)( 45,114)( 46,116)( 47,115)( 48,131)( 49,130)
( 50,129)( 51,134)( 52,133)( 53,132)( 54,137)( 55,136)( 56,135)( 57, 96)
( 58, 98)( 59, 97)( 60, 99)( 61,101)( 62,100)( 63, 93)( 64, 95)( 65, 94)
( 66, 90)( 67, 92)( 68, 91)( 69, 84)( 70, 86)( 71, 85)( 72, 87)( 73, 89)
( 74, 88)( 75,104)( 76,103)( 77,102)( 78,107)( 79,106)( 80,105)( 81,110)
( 82,109)( 83,108);
s3 := Sym(164)!( 6, 10)( 7, 11)( 8, 9)( 12, 21)( 13, 22)( 14, 23)( 15, 28)
( 16, 29)( 17, 27)( 18, 26)( 19, 24)( 20, 25)( 33, 37)( 34, 38)( 35, 36)
( 39, 48)( 40, 49)( 41, 50)( 42, 55)( 43, 56)( 44, 54)( 45, 53)( 46, 51)
( 47, 52)( 60, 64)( 61, 65)( 62, 63)( 66, 75)( 67, 76)( 68, 77)( 69, 82)
( 70, 83)( 71, 81)( 72, 80)( 73, 78)( 74, 79)( 87, 91)( 88, 92)( 89, 90)
( 93,102)( 94,103)( 95,104)( 96,109)( 97,110)( 98,108)( 99,107)(100,105)
(101,106)(114,118)(115,119)(116,117)(120,129)(121,130)(122,131)(123,136)
(124,137)(125,135)(126,134)(127,132)(128,133)(141,145)(142,146)(143,144)
(147,156)(148,157)(149,158)(150,163)(151,164)(152,162)(153,161)(154,159)
(155,160);
poly := sub<Sym(164)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >;
to this polytope