include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,2}*1296a
if this polytope has a name.
Group : SmallGroup(1296,1860)
Rank : 4
Schlafli Type : {6,6,2}
Number of vertices, edges, etc : 54, 162, 54, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,2}*648b
3-fold quotients : {6,6,2}*432b
6-fold quotients : {6,6,2}*216
9-fold quotients : {6,6,2}*144a
27-fold quotients : {2,6,2}*48, {6,2,2}*48
54-fold quotients : {2,3,2}*24, {3,2,2}*24
81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)( 14, 27)
( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)( 37, 46)
( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)( 45, 50)
( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)( 68, 81)
( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 85, 89)( 86, 90)( 87, 88)( 91,100)
( 92,101)( 93,102)( 94,107)( 95,108)( 96,106)( 97,105)( 98,103)( 99,104)
(112,116)(113,117)(114,115)(118,127)(119,128)(120,129)(121,134)(122,135)
(123,133)(124,132)(125,130)(126,131)(139,143)(140,144)(141,142)(145,154)
(146,155)(147,156)(148,161)(149,162)(150,160)(151,159)(152,157)(153,158);;
s1 := ( 1, 10)( 2, 12)( 3, 11)( 4, 13)( 5, 15)( 6, 14)( 7, 16)( 8, 18)
( 9, 17)( 20, 21)( 23, 24)( 26, 27)( 28, 64)( 29, 66)( 30, 65)( 31, 67)
( 32, 69)( 33, 68)( 34, 70)( 35, 72)( 36, 71)( 37, 55)( 38, 57)( 39, 56)
( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 46, 73)( 47, 75)
( 48, 74)( 49, 76)( 50, 78)( 51, 77)( 52, 79)( 53, 81)( 54, 80)( 82, 91)
( 83, 93)( 84, 92)( 85, 94)( 86, 96)( 87, 95)( 88, 97)( 89, 99)( 90, 98)
(101,102)(104,105)(107,108)(109,145)(110,147)(111,146)(112,148)(113,150)
(114,149)(115,151)(116,153)(117,152)(118,136)(119,138)(120,137)(121,139)
(122,141)(123,140)(124,142)(125,144)(126,143)(127,154)(128,156)(129,155)
(130,157)(131,159)(132,158)(133,160)(134,162)(135,161);;
s2 := ( 1,109)( 2,111)( 3,110)( 4,115)( 5,117)( 6,116)( 7,112)( 8,114)
( 9,113)( 10,121)( 11,123)( 12,122)( 13,118)( 14,120)( 15,119)( 16,124)
( 17,126)( 18,125)( 19,134)( 20,133)( 21,135)( 22,131)( 23,130)( 24,132)
( 25,128)( 26,127)( 27,129)( 28, 82)( 29, 84)( 30, 83)( 31, 88)( 32, 90)
( 33, 89)( 34, 85)( 35, 87)( 36, 86)( 37, 94)( 38, 96)( 39, 95)( 40, 91)
( 41, 93)( 42, 92)( 43, 97)( 44, 99)( 45, 98)( 46,107)( 47,106)( 48,108)
( 49,104)( 50,103)( 51,105)( 52,101)( 53,100)( 54,102)( 55,136)( 56,138)
( 57,137)( 58,142)( 59,144)( 60,143)( 61,139)( 62,141)( 63,140)( 64,148)
( 65,150)( 66,149)( 67,145)( 68,147)( 69,146)( 70,151)( 71,153)( 72,152)
( 73,161)( 74,160)( 75,162)( 76,158)( 77,157)( 78,159)( 79,155)( 80,154)
( 81,156);;
s3 := (163,164);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(164)!( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)
( 14, 27)( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)
( 37, 46)( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)
( 45, 50)( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)
( 68, 81)( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 85, 89)( 86, 90)( 87, 88)
( 91,100)( 92,101)( 93,102)( 94,107)( 95,108)( 96,106)( 97,105)( 98,103)
( 99,104)(112,116)(113,117)(114,115)(118,127)(119,128)(120,129)(121,134)
(122,135)(123,133)(124,132)(125,130)(126,131)(139,143)(140,144)(141,142)
(145,154)(146,155)(147,156)(148,161)(149,162)(150,160)(151,159)(152,157)
(153,158);
s1 := Sym(164)!( 1, 10)( 2, 12)( 3, 11)( 4, 13)( 5, 15)( 6, 14)( 7, 16)
( 8, 18)( 9, 17)( 20, 21)( 23, 24)( 26, 27)( 28, 64)( 29, 66)( 30, 65)
( 31, 67)( 32, 69)( 33, 68)( 34, 70)( 35, 72)( 36, 71)( 37, 55)( 38, 57)
( 39, 56)( 40, 58)( 41, 60)( 42, 59)( 43, 61)( 44, 63)( 45, 62)( 46, 73)
( 47, 75)( 48, 74)( 49, 76)( 50, 78)( 51, 77)( 52, 79)( 53, 81)( 54, 80)
( 82, 91)( 83, 93)( 84, 92)( 85, 94)( 86, 96)( 87, 95)( 88, 97)( 89, 99)
( 90, 98)(101,102)(104,105)(107,108)(109,145)(110,147)(111,146)(112,148)
(113,150)(114,149)(115,151)(116,153)(117,152)(118,136)(119,138)(120,137)
(121,139)(122,141)(123,140)(124,142)(125,144)(126,143)(127,154)(128,156)
(129,155)(130,157)(131,159)(132,158)(133,160)(134,162)(135,161);
s2 := Sym(164)!( 1,109)( 2,111)( 3,110)( 4,115)( 5,117)( 6,116)( 7,112)
( 8,114)( 9,113)( 10,121)( 11,123)( 12,122)( 13,118)( 14,120)( 15,119)
( 16,124)( 17,126)( 18,125)( 19,134)( 20,133)( 21,135)( 22,131)( 23,130)
( 24,132)( 25,128)( 26,127)( 27,129)( 28, 82)( 29, 84)( 30, 83)( 31, 88)
( 32, 90)( 33, 89)( 34, 85)( 35, 87)( 36, 86)( 37, 94)( 38, 96)( 39, 95)
( 40, 91)( 41, 93)( 42, 92)( 43, 97)( 44, 99)( 45, 98)( 46,107)( 47,106)
( 48,108)( 49,104)( 50,103)( 51,105)( 52,101)( 53,100)( 54,102)( 55,136)
( 56,138)( 57,137)( 58,142)( 59,144)( 60,143)( 61,139)( 62,141)( 63,140)
( 64,148)( 65,150)( 66,149)( 67,145)( 68,147)( 69,146)( 70,151)( 71,153)
( 72,152)( 73,161)( 74,160)( 75,162)( 76,158)( 77,157)( 78,159)( 79,155)
( 80,154)( 81,156);
s3 := Sym(164)!(163,164);
poly := sub<Sym(164)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 >;
to this polytope