include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,6,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,18}*1296b
if this polytope has a name.
Group : SmallGroup(1296,1861)
Rank : 5
Schlafli Type : {2,2,6,18}
Number of vertices, edges, etc : 2, 2, 9, 81, 27
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,6,6}*432
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 8,12)( 9,13)(10,11)(14,23)(15,24)(16,25)(17,30)(18,31)(19,29)(20,28)
(21,26)(22,27)(35,39)(36,40)(37,38)(41,50)(42,51)(43,52)(44,57)(45,58)(46,56)
(47,55)(48,53)(49,54)(62,66)(63,67)(64,65)(68,77)(69,78)(70,79)(71,84)(72,85)
(73,83)(74,82)(75,80)(76,81);;
s3 := ( 5,14)( 6,16)( 7,15)( 8,17)( 9,19)(10,18)(11,20)(12,22)(13,21)(24,25)
(27,28)(30,31)(32,69)(33,68)(34,70)(35,72)(36,71)(37,73)(38,75)(39,74)(40,76)
(41,60)(42,59)(43,61)(44,63)(45,62)(46,64)(47,66)(48,65)(49,67)(50,78)(51,77)
(52,79)(53,81)(54,80)(55,82)(56,84)(57,83)(58,85);;
s4 := ( 5,32)( 6,34)( 7,33)( 8,38)( 9,40)(10,39)(11,35)(12,37)(13,36)(14,44)
(15,46)(16,45)(17,41)(18,43)(19,42)(20,47)(21,49)(22,48)(23,57)(24,56)(25,58)
(26,54)(27,53)(28,55)(29,51)(30,50)(31,52)(59,60)(62,66)(63,65)(64,67)(68,72)
(69,71)(70,73)(74,75)(77,85)(78,84)(79,83)(80,82);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s4*s3*s2*s3*s4*s3*s4*s3*s4*s3*s4*s3*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(85)!(1,2);
s1 := Sym(85)!(3,4);
s2 := Sym(85)!( 8,12)( 9,13)(10,11)(14,23)(15,24)(16,25)(17,30)(18,31)(19,29)
(20,28)(21,26)(22,27)(35,39)(36,40)(37,38)(41,50)(42,51)(43,52)(44,57)(45,58)
(46,56)(47,55)(48,53)(49,54)(62,66)(63,67)(64,65)(68,77)(69,78)(70,79)(71,84)
(72,85)(73,83)(74,82)(75,80)(76,81);
s3 := Sym(85)!( 5,14)( 6,16)( 7,15)( 8,17)( 9,19)(10,18)(11,20)(12,22)(13,21)
(24,25)(27,28)(30,31)(32,69)(33,68)(34,70)(35,72)(36,71)(37,73)(38,75)(39,74)
(40,76)(41,60)(42,59)(43,61)(44,63)(45,62)(46,64)(47,66)(48,65)(49,67)(50,78)
(51,77)(52,79)(53,81)(54,80)(55,82)(56,84)(57,83)(58,85);
s4 := Sym(85)!( 5,32)( 6,34)( 7,33)( 8,38)( 9,40)(10,39)(11,35)(12,37)(13,36)
(14,44)(15,46)(16,45)(17,41)(18,43)(19,42)(20,47)(21,49)(22,48)(23,57)(24,56)
(25,58)(26,54)(27,53)(28,55)(29,51)(30,50)(31,52)(59,60)(62,66)(63,65)(64,67)
(68,72)(69,71)(70,73)(74,75)(77,85)(78,84)(79,83)(80,82);
poly := sub<Sym(85)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s4*s3*s2*s3*s4*s3*s4*s3*s4*s3*s4*s3*s2*s3*s2 >;
to this polytope