include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,36,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,36,2}*1296c
if this polytope has a name.
Group : SmallGroup(1296,2978)
Rank : 4
Schlafli Type : {6,36,2}
Number of vertices, edges, etc : 9, 162, 54, 2
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,12,2}*432c
9-fold quotients : {6,4,2}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (10,21)(11,19)(12,20)(13,24)(14,22)(15,23)(16,27)(17,25)(18,26)(28,55)
(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,75)(38,73)(39,74)
(40,78)(41,76)(42,77)(43,81)(44,79)(45,80)(46,65)(47,66)(48,64)(49,68)(50,69)
(51,67)(52,71)(53,72)(54,70);;
s1 := ( 1,28)( 2,30)( 3,29)( 4,35)( 5,34)( 6,36)( 7,32)( 8,31)( 9,33)(11,12)
(13,17)(14,16)(15,18)(19,75)(20,74)(21,73)(22,79)(23,81)(24,80)(25,76)(26,78)
(27,77)(37,64)(38,66)(39,65)(40,71)(41,70)(42,72)(43,68)(44,67)(45,69)(46,48)
(49,52)(50,54)(51,53)(56,57)(58,62)(59,61)(60,63);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,22)(11,24)(12,23)(13,19)(14,21)(15,20)
(16,26)(17,25)(18,27)(28,41)(29,40)(30,42)(31,38)(32,37)(33,39)(34,45)(35,44)
(36,43)(46,50)(47,49)(48,51)(52,54)(55,76)(56,78)(57,77)(58,73)(59,75)(60,74)
(61,80)(62,79)(63,81)(64,67)(65,69)(66,68)(70,71);;
s3 := (82,83);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(83)!(10,21)(11,19)(12,20)(13,24)(14,22)(15,23)(16,27)(17,25)(18,26)
(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,75)(38,73)
(39,74)(40,78)(41,76)(42,77)(43,81)(44,79)(45,80)(46,65)(47,66)(48,64)(49,68)
(50,69)(51,67)(52,71)(53,72)(54,70);
s1 := Sym(83)!( 1,28)( 2,30)( 3,29)( 4,35)( 5,34)( 6,36)( 7,32)( 8,31)( 9,33)
(11,12)(13,17)(14,16)(15,18)(19,75)(20,74)(21,73)(22,79)(23,81)(24,80)(25,76)
(26,78)(27,77)(37,64)(38,66)(39,65)(40,71)(41,70)(42,72)(43,68)(44,67)(45,69)
(46,48)(49,52)(50,54)(51,53)(56,57)(58,62)(59,61)(60,63);
s2 := Sym(83)!( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,22)(11,24)(12,23)(13,19)(14,21)
(15,20)(16,26)(17,25)(18,27)(28,41)(29,40)(30,42)(31,38)(32,37)(33,39)(34,45)
(35,44)(36,43)(46,50)(47,49)(48,51)(52,54)(55,76)(56,78)(57,77)(58,73)(59,75)
(60,74)(61,80)(62,79)(63,81)(64,67)(65,69)(66,68)(70,71);
s3 := Sym(83)!(82,83);
poly := sub<Sym(83)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1,
s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2 >;
to this polytope