Polytope of Type {36,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {36,6,2}*1296b
if this polytope has a name.
Group : SmallGroup(1296,2978)
Rank : 4
Schlafli Type : {36,6,2}
Number of vertices, edges, etc : 54, 162, 9, 2
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {12,6,2}*432c
   9-fold quotients : {4,6,2}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 8)( 5, 7)( 6, 9)(10,66)(11,65)(12,64)(13,70)(14,72)(15,71)
(16,67)(17,69)(18,68)(19,46)(20,48)(21,47)(22,53)(23,52)(24,54)(25,50)(26,49)
(27,51)(28,55)(29,57)(30,56)(31,62)(32,61)(33,63)(34,59)(35,58)(36,60)(37,39)
(40,43)(41,45)(42,44)(74,75)(76,80)(77,79)(78,81);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,14)(11,13)(12,15)(16,18)(19,24)(20,23)
(21,22)(26,27)(28,76)(29,78)(30,77)(31,73)(32,75)(33,74)(34,80)(35,79)(36,81)
(37,59)(38,58)(39,60)(40,56)(41,55)(42,57)(43,63)(44,62)(45,61)(46,69)(47,68)
(48,67)(49,66)(50,65)(51,64)(52,70)(53,72)(54,71);;
s2 := ( 1,38)( 2,39)( 3,37)( 4,41)( 5,42)( 6,40)( 7,44)( 8,45)( 9,43)(10,30)
(11,28)(12,29)(13,33)(14,31)(15,32)(16,36)(17,34)(18,35)(19,46)(20,47)(21,48)
(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,65)(56,66)(57,64)(58,68)(59,69)
(60,67)(61,71)(62,72)(63,70);;
s3 := (82,83);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(83)!( 2, 3)( 4, 8)( 5, 7)( 6, 9)(10,66)(11,65)(12,64)(13,70)(14,72)
(15,71)(16,67)(17,69)(18,68)(19,46)(20,48)(21,47)(22,53)(23,52)(24,54)(25,50)
(26,49)(27,51)(28,55)(29,57)(30,56)(31,62)(32,61)(33,63)(34,59)(35,58)(36,60)
(37,39)(40,43)(41,45)(42,44)(74,75)(76,80)(77,79)(78,81);
s1 := Sym(83)!( 1, 4)( 2, 6)( 3, 5)( 7, 8)(10,14)(11,13)(12,15)(16,18)(19,24)
(20,23)(21,22)(26,27)(28,76)(29,78)(30,77)(31,73)(32,75)(33,74)(34,80)(35,79)
(36,81)(37,59)(38,58)(39,60)(40,56)(41,55)(42,57)(43,63)(44,62)(45,61)(46,69)
(47,68)(48,67)(49,66)(50,65)(51,64)(52,70)(53,72)(54,71);
s2 := Sym(83)!( 1,38)( 2,39)( 3,37)( 4,41)( 5,42)( 6,40)( 7,44)( 8,45)( 9,43)
(10,30)(11,28)(12,29)(13,33)(14,31)(15,32)(16,36)(17,34)(18,35)(19,46)(20,47)
(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(55,65)(56,66)(57,64)(58,68)
(59,69)(60,67)(61,71)(62,72)(63,70);
s3 := Sym(83)!(82,83);
poly := sub<Sym(83)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s2*s1*s0*s1*s2 >; 
 

to this polytope