include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,3,2,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,3,2,18}*1296
if this polytope has a name.
Group : SmallGroup(1296,2984)
Rank : 5
Schlafli Type : {6,3,2,18}
Number of vertices, edges, etc : 6, 9, 3, 18, 18
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,3,2,9}*648
3-fold quotients : {2,3,2,18}*432, {6,3,2,6}*432
6-fold quotients : {2,3,2,9}*216, {6,3,2,3}*216
9-fold quotients : {2,3,2,6}*144, {6,3,2,2}*144
18-fold quotients : {2,3,2,3}*72
27-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (4,5)(6,7)(8,9);;
s1 := (1,4)(2,8)(3,6)(7,9);;
s2 := (1,2)(4,7)(5,6)(8,9);;
s3 := (12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27);;
s4 := (10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,26)(23,24)(25,27);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(27)!(4,5)(6,7)(8,9);
s1 := Sym(27)!(1,4)(2,8)(3,6)(7,9);
s2 := Sym(27)!(1,2)(4,7)(5,6)(8,9);
s3 := Sym(27)!(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27);
s4 := Sym(27)!(10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,26)(23,24)(25,27);
poly := sub<Sym(27)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope