Polytope of Type {2,6,9,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,9,2,3}*1296
if this polytope has a name.
Group : SmallGroup(1296,2984)
Rank : 6
Schlafli Type : {2,6,9,2,3}
Number of vertices, edges, etc : 2, 6, 27, 9, 3, 3
Order of s0s1s2s3s4s5 : 18
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,9,2,3}*432, {2,6,3,2,3}*432
   9-fold quotients : {2,2,3,2,3}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(26,27)(28,29);;
s2 := ( 3, 6)( 4,12)( 5, 9)( 8,18)(10,13)(11,15)(14,24)(16,19)(17,21)(20,28)
(22,25)(23,26)(27,29);;
s3 := ( 3, 4)( 5, 8)( 6,10)( 7, 9)(11,14)(12,16)(13,15)(17,20)(18,22)(19,21)
(24,27)(25,26)(28,29);;
s4 := (31,32);;
s5 := (30,31);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5*s4*s5, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(32)!(1,2);
s1 := Sym(32)!( 6, 7)( 9,10)(12,13)(15,16)(18,19)(21,22)(24,25)(26,27)(28,29);
s2 := Sym(32)!( 3, 6)( 4,12)( 5, 9)( 8,18)(10,13)(11,15)(14,24)(16,19)(17,21)
(20,28)(22,25)(23,26)(27,29);
s3 := Sym(32)!( 3, 4)( 5, 8)( 6,10)( 7, 9)(11,14)(12,16)(13,15)(17,20)(18,22)
(19,21)(24,27)(25,26)(28,29);
s4 := Sym(32)!(31,32);
s5 := Sym(32)!(30,31);
poly := sub<Sym(32)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope