include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6}*1296m
if this polytope has a name.
Group : SmallGroup(1296,2985)
Rank : 4
Schlafli Type : {6,6,6}
Number of vertices, edges, etc : 18, 54, 54, 6
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,6}*648b
3-fold quotients : {6,6,2}*432b, {6,6,6}*432e
6-fold quotients : {6,6,2}*216
9-fold quotients : {2,6,6}*144c, {6,6,2}*144a
18-fold quotients : {2,3,6}*72
27-fold quotients : {2,6,2}*48, {6,2,2}*48
54-fold quotients : {2,3,2}*24, {3,2,2}*24
81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)( 14, 24)
( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)
( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)( 68, 78)
( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)( 91,100)
( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)( 99,107)
(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)(122,132)
(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)(145,154)
(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)(153,161);;
s1 := ( 1, 10)( 2, 11)( 3, 12)( 4, 16)( 5, 17)( 6, 18)( 7, 13)( 8, 14)
( 9, 15)( 22, 25)( 23, 26)( 24, 27)( 28, 64)( 29, 65)( 30, 66)( 31, 70)
( 32, 71)( 33, 72)( 34, 67)( 35, 68)( 36, 69)( 37, 55)( 38, 56)( 39, 57)
( 40, 61)( 41, 62)( 42, 63)( 43, 58)( 44, 59)( 45, 60)( 46, 73)( 47, 74)
( 48, 75)( 49, 79)( 50, 80)( 51, 81)( 52, 76)( 53, 77)( 54, 78)( 82, 91)
( 83, 92)( 84, 93)( 85, 97)( 86, 98)( 87, 99)( 88, 94)( 89, 95)( 90, 96)
(103,106)(104,107)(105,108)(109,145)(110,146)(111,147)(112,151)(113,152)
(114,153)(115,148)(116,149)(117,150)(118,136)(119,137)(120,138)(121,142)
(122,143)(123,144)(124,139)(125,140)(126,141)(127,154)(128,155)(129,156)
(130,160)(131,161)(132,162)(133,157)(134,158)(135,159);;
s2 := ( 1,112)( 2,114)( 3,113)( 4,109)( 5,111)( 6,110)( 7,115)( 8,117)
( 9,116)( 10,122)( 11,121)( 12,123)( 13,119)( 14,118)( 15,120)( 16,125)
( 17,124)( 18,126)( 19,132)( 20,131)( 21,130)( 22,129)( 23,128)( 24,127)
( 25,135)( 26,134)( 27,133)( 28, 85)( 29, 87)( 30, 86)( 31, 82)( 32, 84)
( 33, 83)( 34, 88)( 35, 90)( 36, 89)( 37, 95)( 38, 94)( 39, 96)( 40, 92)
( 41, 91)( 42, 93)( 43, 98)( 44, 97)( 45, 99)( 46,105)( 47,104)( 48,103)
( 49,102)( 50,101)( 51,100)( 52,108)( 53,107)( 54,106)( 55,139)( 56,141)
( 57,140)( 58,136)( 59,138)( 60,137)( 61,142)( 62,144)( 63,143)( 64,149)
( 65,148)( 66,150)( 67,146)( 68,145)( 69,147)( 70,152)( 71,151)( 72,153)
( 73,159)( 74,158)( 75,157)( 76,156)( 77,155)( 78,154)( 79,162)( 80,161)
( 81,160);;
s3 := ( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)(121,124)
(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)(141,144)
(148,151)(149,152)(150,153)(157,160)(158,161)(159,162);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(162)!( 2, 3)( 5, 6)( 8, 9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)
( 14, 24)( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)
( 45, 53)( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)
( 68, 78)( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)
( 91,100)( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)
( 99,107)(110,111)(113,114)(116,117)(118,127)(119,129)(120,128)(121,130)
(122,132)(123,131)(124,133)(125,135)(126,134)(137,138)(140,141)(143,144)
(145,154)(146,156)(147,155)(148,157)(149,159)(150,158)(151,160)(152,162)
(153,161);
s1 := Sym(162)!( 1, 10)( 2, 11)( 3, 12)( 4, 16)( 5, 17)( 6, 18)( 7, 13)
( 8, 14)( 9, 15)( 22, 25)( 23, 26)( 24, 27)( 28, 64)( 29, 65)( 30, 66)
( 31, 70)( 32, 71)( 33, 72)( 34, 67)( 35, 68)( 36, 69)( 37, 55)( 38, 56)
( 39, 57)( 40, 61)( 41, 62)( 42, 63)( 43, 58)( 44, 59)( 45, 60)( 46, 73)
( 47, 74)( 48, 75)( 49, 79)( 50, 80)( 51, 81)( 52, 76)( 53, 77)( 54, 78)
( 82, 91)( 83, 92)( 84, 93)( 85, 97)( 86, 98)( 87, 99)( 88, 94)( 89, 95)
( 90, 96)(103,106)(104,107)(105,108)(109,145)(110,146)(111,147)(112,151)
(113,152)(114,153)(115,148)(116,149)(117,150)(118,136)(119,137)(120,138)
(121,142)(122,143)(123,144)(124,139)(125,140)(126,141)(127,154)(128,155)
(129,156)(130,160)(131,161)(132,162)(133,157)(134,158)(135,159);
s2 := Sym(162)!( 1,112)( 2,114)( 3,113)( 4,109)( 5,111)( 6,110)( 7,115)
( 8,117)( 9,116)( 10,122)( 11,121)( 12,123)( 13,119)( 14,118)( 15,120)
( 16,125)( 17,124)( 18,126)( 19,132)( 20,131)( 21,130)( 22,129)( 23,128)
( 24,127)( 25,135)( 26,134)( 27,133)( 28, 85)( 29, 87)( 30, 86)( 31, 82)
( 32, 84)( 33, 83)( 34, 88)( 35, 90)( 36, 89)( 37, 95)( 38, 94)( 39, 96)
( 40, 92)( 41, 91)( 42, 93)( 43, 98)( 44, 97)( 45, 99)( 46,105)( 47,104)
( 48,103)( 49,102)( 50,101)( 51,100)( 52,108)( 53,107)( 54,106)( 55,139)
( 56,141)( 57,140)( 58,136)( 59,138)( 60,137)( 61,142)( 62,144)( 63,143)
( 64,149)( 65,148)( 66,150)( 67,146)( 68,145)( 69,147)( 70,152)( 71,151)
( 72,153)( 73,159)( 74,158)( 75,157)( 76,156)( 77,155)( 78,154)( 79,162)
( 80,161)( 81,160);
s3 := Sym(162)!( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108)(112,115)(113,116)(114,117)
(121,124)(122,125)(123,126)(130,133)(131,134)(132,135)(139,142)(140,143)
(141,144)(148,151)(149,152)(150,153)(157,160)(158,161)(159,162);
poly := sub<Sym(162)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope