include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,3,2}*1296e
if this polytope has a name.
Group : SmallGroup(1296,2985)
Rank : 5
Schlafli Type : {6,6,3,2}
Number of vertices, edges, etc : 18, 54, 27, 3, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,6,3,2}*432a, {6,6,3,2}*432b
6-fold quotients : {3,6,3,2}*216
9-fold quotients : {2,6,3,2}*144, {6,2,3,2}*144
18-fold quotients : {3,2,3,2}*72
27-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27);;
s1 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,12)(13,18)(14,17)(15,16)(19,20)(22,26)
(23,25)(24,27);;
s2 := ( 1,13)( 2,15)( 3,14)( 4,10)( 5,12)( 6,11)( 7,16)( 8,18)( 9,17)(19,22)
(20,24)(21,23)(26,27);;
s3 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)
(16,22)(17,24)(18,23);;
s4 := (28,29);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(29)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27);
s1 := Sym(29)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,12)(13,18)(14,17)(15,16)(19,20)
(22,26)(23,25)(24,27);
s2 := Sym(29)!( 1,13)( 2,15)( 3,14)( 4,10)( 5,12)( 6,11)( 7,16)( 8,18)( 9,17)
(19,22)(20,24)(21,23)(26,27);
s3 := Sym(29)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)
(15,26)(16,22)(17,24)(18,23);
s4 := Sym(29)!(28,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1 >;
to this polytope