include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12}*1296s
if this polytope has a name.
Group : SmallGroup(1296,3528)
Rank : 3
Schlafli Type : {6,12}
Number of vertices, edges, etc : 54, 324, 108
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,4}*432b, {6,12}*432h
9-fold quotients : {6,12}*144c, {6,4}*144
18-fold quotients : {6,4}*72, {6,6}*72c
27-fold quotients : {6,4}*48a
36-fold quotients : {3,6}*36
54-fold quotients : {6,2}*24
81-fold quotients : {2,4}*16
108-fold quotients : {3,2}*12
162-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)(15,26)
(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)(46,64)
(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);;
s1 := ( 1,32)( 2,31)( 3,33)( 4,29)( 5,28)( 6,30)( 7,35)( 8,34)( 9,36)(10,41)
(11,40)(12,42)(13,38)(14,37)(15,39)(16,44)(17,43)(18,45)(19,50)(20,49)(21,51)
(22,47)(23,46)(24,48)(25,53)(26,52)(27,54)(55,59)(56,58)(57,60)(61,62)(64,68)
(65,67)(66,69)(70,71)(73,77)(74,76)(75,78)(79,80);;
s2 := ( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)(16,31)
(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)(27,60)
(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)(53,68)
(54,69)(76,79)(77,80)(78,81);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(10,19)(11,21)(12,20)(13,25)(14,27)
(15,26)(16,22)(17,24)(18,23)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)
(35,60)(36,59)(37,73)(38,75)(39,74)(40,79)(41,81)(42,80)(43,76)(44,78)(45,77)
(46,64)(47,66)(48,65)(49,70)(50,72)(51,71)(52,67)(53,69)(54,68);
s1 := Sym(81)!( 1,32)( 2,31)( 3,33)( 4,29)( 5,28)( 6,30)( 7,35)( 8,34)( 9,36)
(10,41)(11,40)(12,42)(13,38)(14,37)(15,39)(16,44)(17,43)(18,45)(19,50)(20,49)
(21,51)(22,47)(23,46)(24,48)(25,53)(26,52)(27,54)(55,59)(56,58)(57,60)(61,62)
(64,68)(65,67)(66,69)(70,71)(73,77)(74,76)(75,78)(79,80);
s2 := Sym(81)!( 4, 7)( 5, 8)( 6, 9)(10,28)(11,29)(12,30)(13,34)(14,35)(15,36)
(16,31)(17,32)(18,33)(19,55)(20,56)(21,57)(22,61)(23,62)(24,63)(25,58)(26,59)
(27,60)(40,43)(41,44)(42,45)(46,64)(47,65)(48,66)(49,70)(50,71)(51,72)(52,67)
(53,68)(54,69)(76,79)(77,80)(78,81);
poly := sub<Sym(81)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope