Polytope of Type {6,12,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,6}*1296e
if this polytope has a name.
Group : SmallGroup(1296,3528)
Rank : 4
Schlafli Type : {6,12,6}
Number of vertices, edges, etc : 9, 54, 54, 6
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,4,6}*432a
   9-fold quotients : {6,4,2}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(28,55)
(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,73)(38,74)(39,75)
(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,64)(47,65)(48,66)(49,67)(50,68)
(51,69)(52,70)(53,71)(54,72);;
s1 := ( 1,37)( 2,38)( 3,39)( 4,43)( 5,44)( 6,45)( 7,40)( 8,41)( 9,42)(13,16)
(14,17)(15,18)(19,64)(20,65)(21,66)(22,70)(23,71)(24,72)(25,67)(26,68)(27,69)
(31,34)(32,35)(33,36)(46,55)(47,56)(48,57)(49,61)(50,62)(51,63)(52,58)(53,59)
(54,60)(76,79)(77,80)(78,81);;
s2 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)(20,24)
(21,23)(26,27)(28,58)(29,60)(30,59)(31,55)(32,57)(33,56)(34,61)(35,63)(36,62)
(37,67)(38,69)(39,68)(40,64)(41,66)(42,65)(43,70)(44,72)(45,71)(46,76)(47,78)
(48,77)(49,73)(50,75)(51,74)(52,79)(53,81)(54,80);;
s3 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)(22,26)
(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)(46,47)
(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)(69,72)
(73,74)(76,80)(77,79)(78,81);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)
(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,73)(38,74)
(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,64)(47,65)(48,66)(49,67)
(50,68)(51,69)(52,70)(53,71)(54,72);
s1 := Sym(81)!( 1,37)( 2,38)( 3,39)( 4,43)( 5,44)( 6,45)( 7,40)( 8,41)( 9,42)
(13,16)(14,17)(15,18)(19,64)(20,65)(21,66)(22,70)(23,71)(24,72)(25,67)(26,68)
(27,69)(31,34)(32,35)(33,36)(46,55)(47,56)(48,57)(49,61)(50,62)(51,63)(52,58)
(53,59)(54,60)(76,79)(77,80)(78,81);
s2 := Sym(81)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)
(20,24)(21,23)(26,27)(28,58)(29,60)(30,59)(31,55)(32,57)(33,56)(34,61)(35,63)
(36,62)(37,67)(38,69)(39,68)(40,64)(41,66)(42,65)(43,70)(44,72)(45,71)(46,76)
(47,78)(48,77)(49,73)(50,75)(51,74)(52,79)(53,81)(54,80);
s3 := Sym(81)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)
(22,26)(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)
(46,47)(49,53)(50,52)(51,54)(55,56)(58,62)(59,61)(60,63)(64,65)(67,71)(68,70)
(69,72)(73,74)(76,80)(77,79)(78,81);
poly := sub<Sym(81)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 >; 
 
References : None.
to this polytope