include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,6}*1296
if this polytope has a name.
Group : SmallGroup(1296,3531)
Rank : 4
Schlafli Type : {4,4,6}
Number of vertices, edges, etc : 9, 54, 81, 18
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 6
Special Properties :
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
9-fold quotients : {4,4,2}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 8)( 3, 6)( 4, 7)(10,64)(11,71)(12,69)(13,70)(14,68)(15,66)(16,67)
(17,65)(18,72)(19,46)(20,53)(21,51)(22,52)(23,50)(24,48)(25,49)(26,47)(27,54)
(28,55)(29,62)(30,60)(31,61)(32,59)(33,57)(34,58)(35,56)(36,63)(38,44)(39,42)
(40,43)(74,80)(75,78)(76,79);;
s1 := ( 4, 9)( 5, 7)( 6, 8)(13,18)(14,16)(15,17)(22,27)(23,25)(24,26)(28,73)
(29,74)(30,75)(31,81)(32,79)(33,80)(34,77)(35,78)(36,76)(37,55)(38,56)(39,57)
(40,63)(41,61)(42,62)(43,59)(44,60)(45,58)(46,64)(47,65)(48,66)(49,72)(50,70)
(51,71)(52,68)(53,69)(54,67);;
s2 := ( 1,41)( 2,43)( 3,39)( 4,44)( 5,37)( 6,42)( 7,38)( 8,40)( 9,45)(10,59)
(11,61)(12,57)(13,62)(14,55)(15,60)(16,56)(17,58)(18,63)(19,23)(20,25)(22,26)
(28,68)(29,70)(30,66)(31,71)(32,64)(33,69)(34,65)(35,67)(36,72)(46,50)(47,52)
(49,53)(73,77)(74,79)(76,80);;
s3 := (10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(28,55)
(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,73)(38,74)(39,75)
(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,64)(47,65)(48,66)(49,67)(50,68)
(51,69)(52,70)(53,71)(54,72);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s3*s1*s2*s3*s2*s3*s1*s0*s1*s2*s3*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 8)( 3, 6)( 4, 7)(10,64)(11,71)(12,69)(13,70)(14,68)(15,66)
(16,67)(17,65)(18,72)(19,46)(20,53)(21,51)(22,52)(23,50)(24,48)(25,49)(26,47)
(27,54)(28,55)(29,62)(30,60)(31,61)(32,59)(33,57)(34,58)(35,56)(36,63)(38,44)
(39,42)(40,43)(74,80)(75,78)(76,79);
s1 := Sym(81)!( 4, 9)( 5, 7)( 6, 8)(13,18)(14,16)(15,17)(22,27)(23,25)(24,26)
(28,73)(29,74)(30,75)(31,81)(32,79)(33,80)(34,77)(35,78)(36,76)(37,55)(38,56)
(39,57)(40,63)(41,61)(42,62)(43,59)(44,60)(45,58)(46,64)(47,65)(48,66)(49,72)
(50,70)(51,71)(52,68)(53,69)(54,67);
s2 := Sym(81)!( 1,41)( 2,43)( 3,39)( 4,44)( 5,37)( 6,42)( 7,38)( 8,40)( 9,45)
(10,59)(11,61)(12,57)(13,62)(14,55)(15,60)(16,56)(17,58)(18,63)(19,23)(20,25)
(22,26)(28,68)(29,70)(30,66)(31,71)(32,64)(33,69)(34,65)(35,67)(36,72)(46,50)
(47,52)(49,53)(73,77)(74,79)(76,80);
s3 := Sym(81)!(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)
(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,73)(38,74)
(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,64)(47,65)(48,66)(49,67)
(50,68)(51,69)(52,70)(53,71)(54,72);
poly := sub<Sym(81)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s3*s1*s2*s3*s2*s3*s1*s0*s1*s2*s3*s2*s1 >;
References : None.
to this polytope