Polytope of Type {3,6,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,6,6}*1296d
if this polytope has a name.
Group : SmallGroup(1296,3538)
Rank : 5
Schlafli Type : {3,6,6,6}
Number of vertices, edges, etc : 3, 9, 18, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,6,6}*432c, {3,6,6,2}*432b
   6-fold quotients : {3,2,3,6}*216
   9-fold quotients : {3,2,6,2}*144, {3,6,2,2}*144
   18-fold quotients : {3,2,3,2}*72
   27-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)(16,25)
(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)(42,50)
(43,52)(44,54)(45,53)(56,57)(59,60)(62,63)(64,73)(65,75)(66,74)(67,76)(68,78)
(69,77)(70,79)(71,81)(72,80);;
s1 := ( 1,11)( 2,10)( 3,12)( 4,14)( 5,13)( 6,15)( 7,17)( 8,16)( 9,18)(19,20)
(22,23)(25,26)(28,38)(29,37)(30,39)(31,41)(32,40)(33,42)(34,44)(35,43)(36,45)
(46,47)(49,50)(52,53)(55,65)(56,64)(57,66)(58,68)(59,67)(60,69)(61,71)(62,70)
(63,72)(73,74)(76,77)(79,80);;
s2 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)(36,59)
(37,64)(38,66)(39,65)(40,70)(41,72)(42,71)(43,67)(44,69)(45,68)(46,73)(47,75)
(48,74)(49,79)(50,81)(51,80)(52,76)(53,78)(54,77);;
s3 := ( 1,31)( 2,32)( 3,33)( 4,28)( 5,29)( 6,30)( 7,34)( 8,35)( 9,36)(10,40)
(11,41)(12,42)(13,37)(14,38)(15,39)(16,43)(17,44)(18,45)(19,49)(20,50)(21,51)
(22,46)(23,47)(24,48)(25,52)(26,53)(27,54)(55,58)(56,59)(57,60)(64,67)(65,68)
(66,69)(73,76)(74,77)(75,78);;
s4 := (28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)
(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)
(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)
(16,25)(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)
(42,50)(43,52)(44,54)(45,53)(56,57)(59,60)(62,63)(64,73)(65,75)(66,74)(67,76)
(68,78)(69,77)(70,79)(71,81)(72,80);
s1 := Sym(81)!( 1,11)( 2,10)( 3,12)( 4,14)( 5,13)( 6,15)( 7,17)( 8,16)( 9,18)
(19,20)(22,23)(25,26)(28,38)(29,37)(30,39)(31,41)(32,40)(33,42)(34,44)(35,43)
(36,45)(46,47)(49,50)(52,53)(55,65)(56,64)(57,66)(58,68)(59,67)(60,69)(61,71)
(62,70)(63,72)(73,74)(76,77)(79,80);
s2 := Sym(81)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)
(22,25)(23,27)(24,26)(28,55)(29,57)(30,56)(31,61)(32,63)(33,62)(34,58)(35,60)
(36,59)(37,64)(38,66)(39,65)(40,70)(41,72)(42,71)(43,67)(44,69)(45,68)(46,73)
(47,75)(48,74)(49,79)(50,81)(51,80)(52,76)(53,78)(54,77);
s3 := Sym(81)!( 1,31)( 2,32)( 3,33)( 4,28)( 5,29)( 6,30)( 7,34)( 8,35)( 9,36)
(10,40)(11,41)(12,42)(13,37)(14,38)(15,39)(16,43)(17,44)(18,45)(19,49)(20,50)
(21,51)(22,46)(23,47)(24,48)(25,52)(26,53)(27,54)(55,58)(56,59)(57,60)(64,67)
(65,68)(66,69)(73,76)(74,77)(75,78);
s4 := Sym(81)!(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)
(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)
(48,75)(49,76)(50,77)(51,78)(52,79)(53,80)(54,81);
poly := sub<Sym(81)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3 >; 
 
References : None.
to this polytope