include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6}*1296r
if this polytope has a name.
Group : SmallGroup(1296,3538)
Rank : 4
Schlafli Type : {6,6,6}
Number of vertices, edges, etc : 6, 54, 54, 18
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,6,6}*432d, {6,6,6}*432f, {2,6,6}*432d
6-fold quotients : {6,3,6}*216
9-fold quotients : {2,6,6}*144a, {2,6,6}*144b, {2,6,6}*144c, {6,6,2}*144b
18-fold quotients : {2,3,6}*72, {2,6,3}*72, {6,3,2}*72
27-fold quotients : {2,2,6}*48, {2,6,2}*48
54-fold quotients : {2,2,3}*24, {2,3,2}*24
81-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)
(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)(62,63)
(65,66)(68,69)(71,72)(74,75)(77,78)(80,81);;
s1 := ( 1, 2)( 4, 5)( 7, 8)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)(16,26)
(17,25)(18,27)(28,56)(29,55)(30,57)(31,59)(32,58)(33,60)(34,62)(35,61)(36,63)
(37,74)(38,73)(39,75)(40,77)(41,76)(42,78)(43,80)(44,79)(45,81)(46,65)(47,64)
(48,66)(49,68)(50,67)(51,69)(52,71)(53,70)(54,72);;
s2 := ( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)(10,28)
(11,30)(12,29)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,46)(20,48)(21,47)
(22,52)(23,54)(24,53)(25,49)(26,51)(27,50)(55,64)(56,66)(57,65)(58,70)(59,72)
(60,71)(61,67)(62,69)(63,68)(74,75)(76,79)(77,81)(78,80);;
s3 := ( 1, 4)( 2, 5)( 3, 6)(10,22)(11,23)(12,24)(13,19)(14,20)(15,21)(16,25)
(17,26)(18,27)(28,31)(29,32)(30,33)(37,49)(38,50)(39,51)(40,46)(41,47)(42,48)
(43,52)(44,53)(45,54)(55,58)(56,59)(57,60)(64,76)(65,77)(66,78)(67,73)(68,74)
(69,75)(70,79)(71,80)(72,81);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(81)!( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)
(29,30)(32,33)(35,36)(38,39)(41,42)(44,45)(47,48)(50,51)(53,54)(56,57)(59,60)
(62,63)(65,66)(68,69)(71,72)(74,75)(77,78)(80,81);
s1 := Sym(81)!( 1, 2)( 4, 5)( 7, 8)(10,20)(11,19)(12,21)(13,23)(14,22)(15,24)
(16,26)(17,25)(18,27)(28,56)(29,55)(30,57)(31,59)(32,58)(33,60)(34,62)(35,61)
(36,63)(37,74)(38,73)(39,75)(40,77)(41,76)(42,78)(43,80)(44,79)(45,81)(46,65)
(47,64)(48,66)(49,68)(50,67)(51,69)(52,71)(53,70)(54,72);
s2 := Sym(81)!( 1,37)( 2,39)( 3,38)( 4,43)( 5,45)( 6,44)( 7,40)( 8,42)( 9,41)
(10,28)(11,30)(12,29)(13,34)(14,36)(15,35)(16,31)(17,33)(18,32)(19,46)(20,48)
(21,47)(22,52)(23,54)(24,53)(25,49)(26,51)(27,50)(55,64)(56,66)(57,65)(58,70)
(59,72)(60,71)(61,67)(62,69)(63,68)(74,75)(76,79)(77,81)(78,80);
s3 := Sym(81)!( 1, 4)( 2, 5)( 3, 6)(10,22)(11,23)(12,24)(13,19)(14,20)(15,21)
(16,25)(17,26)(18,27)(28,31)(29,32)(30,33)(37,49)(38,50)(39,51)(40,46)(41,47)
(42,48)(43,52)(44,53)(45,54)(55,58)(56,59)(57,60)(64,76)(65,77)(66,78)(67,73)
(68,74)(69,75)(70,79)(71,80)(72,81);
poly := sub<Sym(81)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s1*s2 >;
References : None.
to this polytope