include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,162}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,162}*1296c
if this polytope has a name.
Group : SmallGroup(1296,630)
Rank : 3
Schlafli Type : {4,162}
Number of vertices, edges, etc : 4, 324, 162
Order of s0s1s2 : 81
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,81}*648
3-fold quotients : {4,54}*432c
6-fold quotients : {4,27}*216
9-fold quotients : {4,18}*144c
18-fold quotients : {4,9}*72
27-fold quotients : {4,6}*48b
54-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,327)( 2,328)( 3,325)( 4,326)( 5,331)( 6,332)( 7,329)( 8,330)
( 9,335)( 10,336)( 11,333)( 12,334)( 13,339)( 14,340)( 15,337)( 16,338)
( 17,343)( 18,344)( 19,341)( 20,342)( 21,347)( 22,348)( 23,345)( 24,346)
( 25,351)( 26,352)( 27,349)( 28,350)( 29,355)( 30,356)( 31,353)( 32,354)
( 33,359)( 34,360)( 35,357)( 36,358)( 37,363)( 38,364)( 39,361)( 40,362)
( 41,367)( 42,368)( 43,365)( 44,366)( 45,371)( 46,372)( 47,369)( 48,370)
( 49,375)( 50,376)( 51,373)( 52,374)( 53,379)( 54,380)( 55,377)( 56,378)
( 57,383)( 58,384)( 59,381)( 60,382)( 61,387)( 62,388)( 63,385)( 64,386)
( 65,391)( 66,392)( 67,389)( 68,390)( 69,395)( 70,396)( 71,393)( 72,394)
( 73,399)( 74,400)( 75,397)( 76,398)( 77,403)( 78,404)( 79,401)( 80,402)
( 81,407)( 82,408)( 83,405)( 84,406)( 85,411)( 86,412)( 87,409)( 88,410)
( 89,415)( 90,416)( 91,413)( 92,414)( 93,419)( 94,420)( 95,417)( 96,418)
( 97,423)( 98,424)( 99,421)(100,422)(101,427)(102,428)(103,425)(104,426)
(105,431)(106,432)(107,429)(108,430)(109,435)(110,436)(111,433)(112,434)
(113,439)(114,440)(115,437)(116,438)(117,443)(118,444)(119,441)(120,442)
(121,447)(122,448)(123,445)(124,446)(125,451)(126,452)(127,449)(128,450)
(129,455)(130,456)(131,453)(132,454)(133,459)(134,460)(135,457)(136,458)
(137,463)(138,464)(139,461)(140,462)(141,467)(142,468)(143,465)(144,466)
(145,471)(146,472)(147,469)(148,470)(149,475)(150,476)(151,473)(152,474)
(153,479)(154,480)(155,477)(156,478)(157,483)(158,484)(159,481)(160,482)
(161,487)(162,488)(163,485)(164,486)(165,491)(166,492)(167,489)(168,490)
(169,495)(170,496)(171,493)(172,494)(173,499)(174,500)(175,497)(176,498)
(177,503)(178,504)(179,501)(180,502)(181,507)(182,508)(183,505)(184,506)
(185,511)(186,512)(187,509)(188,510)(189,515)(190,516)(191,513)(192,514)
(193,519)(194,520)(195,517)(196,518)(197,523)(198,524)(199,521)(200,522)
(201,527)(202,528)(203,525)(204,526)(205,531)(206,532)(207,529)(208,530)
(209,535)(210,536)(211,533)(212,534)(213,539)(214,540)(215,537)(216,538)
(217,543)(218,544)(219,541)(220,542)(221,547)(222,548)(223,545)(224,546)
(225,551)(226,552)(227,549)(228,550)(229,555)(230,556)(231,553)(232,554)
(233,559)(234,560)(235,557)(236,558)(237,563)(238,564)(239,561)(240,562)
(241,567)(242,568)(243,565)(244,566)(245,571)(246,572)(247,569)(248,570)
(249,575)(250,576)(251,573)(252,574)(253,579)(254,580)(255,577)(256,578)
(257,583)(258,584)(259,581)(260,582)(261,587)(262,588)(263,585)(264,586)
(265,591)(266,592)(267,589)(268,590)(269,595)(270,596)(271,593)(272,594)
(273,599)(274,600)(275,597)(276,598)(277,603)(278,604)(279,601)(280,602)
(281,607)(282,608)(283,605)(284,606)(285,611)(286,612)(287,609)(288,610)
(289,615)(290,616)(291,613)(292,614)(293,619)(294,620)(295,617)(296,618)
(297,623)(298,624)(299,621)(300,622)(301,627)(302,628)(303,625)(304,626)
(305,631)(306,632)(307,629)(308,630)(309,635)(310,636)(311,633)(312,634)
(313,639)(314,640)(315,637)(316,638)(317,643)(318,644)(319,641)(320,642)
(321,647)(322,648)(323,645)(324,646);;
s1 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 33)( 14, 34)( 15, 36)
( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)( 23, 28)
( 24, 27)( 37,105)( 38,106)( 39,108)( 40,107)( 41,101)( 42,102)( 43,104)
( 44,103)( 45, 97)( 46, 98)( 47,100)( 48, 99)( 49, 93)( 50, 94)( 51, 96)
( 52, 95)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)
( 60, 87)( 61, 81)( 62, 82)( 63, 84)( 64, 83)( 65, 77)( 66, 78)( 67, 80)
( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)(109,321)(110,322)(111,324)
(112,323)(113,317)(114,318)(115,320)(116,319)(117,313)(118,314)(119,316)
(120,315)(121,309)(122,310)(123,312)(124,311)(125,305)(126,306)(127,308)
(128,307)(129,301)(130,302)(131,304)(132,303)(133,297)(134,298)(135,300)
(136,299)(137,293)(138,294)(139,296)(140,295)(141,289)(142,290)(143,292)
(144,291)(145,285)(146,286)(147,288)(148,287)(149,281)(150,282)(151,284)
(152,283)(153,277)(154,278)(155,280)(156,279)(157,273)(158,274)(159,276)
(160,275)(161,269)(162,270)(163,272)(164,271)(165,265)(166,266)(167,268)
(168,267)(169,261)(170,262)(171,264)(172,263)(173,257)(174,258)(175,260)
(176,259)(177,253)(178,254)(179,256)(180,255)(181,249)(182,250)(183,252)
(184,251)(185,245)(186,246)(187,248)(188,247)(189,241)(190,242)(191,244)
(192,243)(193,237)(194,238)(195,240)(196,239)(197,233)(198,234)(199,236)
(200,235)(201,229)(202,230)(203,232)(204,231)(205,225)(206,226)(207,228)
(208,227)(209,221)(210,222)(211,224)(212,223)(213,217)(214,218)(215,220)
(216,219)(327,328)(329,333)(330,334)(331,336)(332,335)(337,357)(338,358)
(339,360)(340,359)(341,353)(342,354)(343,356)(344,355)(345,349)(346,350)
(347,352)(348,351)(361,429)(362,430)(363,432)(364,431)(365,425)(366,426)
(367,428)(368,427)(369,421)(370,422)(371,424)(372,423)(373,417)(374,418)
(375,420)(376,419)(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)
(383,412)(384,411)(385,405)(386,406)(387,408)(388,407)(389,401)(390,402)
(391,404)(392,403)(393,397)(394,398)(395,400)(396,399)(433,645)(434,646)
(435,648)(436,647)(437,641)(438,642)(439,644)(440,643)(441,637)(442,638)
(443,640)(444,639)(445,633)(446,634)(447,636)(448,635)(449,629)(450,630)
(451,632)(452,631)(453,625)(454,626)(455,628)(456,627)(457,621)(458,622)
(459,624)(460,623)(461,617)(462,618)(463,620)(464,619)(465,613)(466,614)
(467,616)(468,615)(469,609)(470,610)(471,612)(472,611)(473,605)(474,606)
(475,608)(476,607)(477,601)(478,602)(479,604)(480,603)(481,597)(482,598)
(483,600)(484,599)(485,593)(486,594)(487,596)(488,595)(489,589)(490,590)
(491,592)(492,591)(493,585)(494,586)(495,588)(496,587)(497,581)(498,582)
(499,584)(500,583)(501,577)(502,578)(503,580)(504,579)(505,573)(506,574)
(507,576)(508,575)(509,569)(510,570)(511,572)(512,571)(513,565)(514,566)
(515,568)(516,567)(517,561)(518,562)(519,564)(520,563)(521,557)(522,558)
(523,560)(524,559)(525,553)(526,554)(527,556)(528,555)(529,549)(530,550)
(531,552)(532,551)(533,545)(534,546)(535,548)(536,547)(537,541)(538,542)
(539,544)(540,543);;
s2 := ( 1,433)( 2,436)( 3,435)( 4,434)( 5,441)( 6,444)( 7,443)( 8,442)
( 9,437)( 10,440)( 11,439)( 12,438)( 13,465)( 14,468)( 15,467)( 16,466)
( 17,461)( 18,464)( 19,463)( 20,462)( 21,457)( 22,460)( 23,459)( 24,458)
( 25,453)( 26,456)( 27,455)( 28,454)( 29,449)( 30,452)( 31,451)( 32,450)
( 33,445)( 34,448)( 35,447)( 36,446)( 37,537)( 38,540)( 39,539)( 40,538)
( 41,533)( 42,536)( 43,535)( 44,534)( 45,529)( 46,532)( 47,531)( 48,530)
( 49,525)( 50,528)( 51,527)( 52,526)( 53,521)( 54,524)( 55,523)( 56,522)
( 57,517)( 58,520)( 59,519)( 60,518)( 61,513)( 62,516)( 63,515)( 64,514)
( 65,509)( 66,512)( 67,511)( 68,510)( 69,505)( 70,508)( 71,507)( 72,506)
( 73,501)( 74,504)( 75,503)( 76,502)( 77,497)( 78,500)( 79,499)( 80,498)
( 81,493)( 82,496)( 83,495)( 84,494)( 85,489)( 86,492)( 87,491)( 88,490)
( 89,485)( 90,488)( 91,487)( 92,486)( 93,481)( 94,484)( 95,483)( 96,482)
( 97,477)( 98,480)( 99,479)(100,478)(101,473)(102,476)(103,475)(104,474)
(105,469)(106,472)(107,471)(108,470)(109,325)(110,328)(111,327)(112,326)
(113,333)(114,336)(115,335)(116,334)(117,329)(118,332)(119,331)(120,330)
(121,357)(122,360)(123,359)(124,358)(125,353)(126,356)(127,355)(128,354)
(129,349)(130,352)(131,351)(132,350)(133,345)(134,348)(135,347)(136,346)
(137,341)(138,344)(139,343)(140,342)(141,337)(142,340)(143,339)(144,338)
(145,429)(146,432)(147,431)(148,430)(149,425)(150,428)(151,427)(152,426)
(153,421)(154,424)(155,423)(156,422)(157,417)(158,420)(159,419)(160,418)
(161,413)(162,416)(163,415)(164,414)(165,409)(166,412)(167,411)(168,410)
(169,405)(170,408)(171,407)(172,406)(173,401)(174,404)(175,403)(176,402)
(177,397)(178,400)(179,399)(180,398)(181,393)(182,396)(183,395)(184,394)
(185,389)(186,392)(187,391)(188,390)(189,385)(190,388)(191,387)(192,386)
(193,381)(194,384)(195,383)(196,382)(197,377)(198,380)(199,379)(200,378)
(201,373)(202,376)(203,375)(204,374)(205,369)(206,372)(207,371)(208,370)
(209,365)(210,368)(211,367)(212,366)(213,361)(214,364)(215,363)(216,362)
(217,645)(218,648)(219,647)(220,646)(221,641)(222,644)(223,643)(224,642)
(225,637)(226,640)(227,639)(228,638)(229,633)(230,636)(231,635)(232,634)
(233,629)(234,632)(235,631)(236,630)(237,625)(238,628)(239,627)(240,626)
(241,621)(242,624)(243,623)(244,622)(245,617)(246,620)(247,619)(248,618)
(249,613)(250,616)(251,615)(252,614)(253,609)(254,612)(255,611)(256,610)
(257,605)(258,608)(259,607)(260,606)(261,601)(262,604)(263,603)(264,602)
(265,597)(266,600)(267,599)(268,598)(269,593)(270,596)(271,595)(272,594)
(273,589)(274,592)(275,591)(276,590)(277,585)(278,588)(279,587)(280,586)
(281,581)(282,584)(283,583)(284,582)(285,577)(286,580)(287,579)(288,578)
(289,573)(290,576)(291,575)(292,574)(293,569)(294,572)(295,571)(296,570)
(297,565)(298,568)(299,567)(300,566)(301,561)(302,564)(303,563)(304,562)
(305,557)(306,560)(307,559)(308,558)(309,553)(310,556)(311,555)(312,554)
(313,549)(314,552)(315,551)(316,550)(317,545)(318,548)(319,547)(320,546)
(321,541)(322,544)(323,543)(324,542);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(648)!( 1,327)( 2,328)( 3,325)( 4,326)( 5,331)( 6,332)( 7,329)
( 8,330)( 9,335)( 10,336)( 11,333)( 12,334)( 13,339)( 14,340)( 15,337)
( 16,338)( 17,343)( 18,344)( 19,341)( 20,342)( 21,347)( 22,348)( 23,345)
( 24,346)( 25,351)( 26,352)( 27,349)( 28,350)( 29,355)( 30,356)( 31,353)
( 32,354)( 33,359)( 34,360)( 35,357)( 36,358)( 37,363)( 38,364)( 39,361)
( 40,362)( 41,367)( 42,368)( 43,365)( 44,366)( 45,371)( 46,372)( 47,369)
( 48,370)( 49,375)( 50,376)( 51,373)( 52,374)( 53,379)( 54,380)( 55,377)
( 56,378)( 57,383)( 58,384)( 59,381)( 60,382)( 61,387)( 62,388)( 63,385)
( 64,386)( 65,391)( 66,392)( 67,389)( 68,390)( 69,395)( 70,396)( 71,393)
( 72,394)( 73,399)( 74,400)( 75,397)( 76,398)( 77,403)( 78,404)( 79,401)
( 80,402)( 81,407)( 82,408)( 83,405)( 84,406)( 85,411)( 86,412)( 87,409)
( 88,410)( 89,415)( 90,416)( 91,413)( 92,414)( 93,419)( 94,420)( 95,417)
( 96,418)( 97,423)( 98,424)( 99,421)(100,422)(101,427)(102,428)(103,425)
(104,426)(105,431)(106,432)(107,429)(108,430)(109,435)(110,436)(111,433)
(112,434)(113,439)(114,440)(115,437)(116,438)(117,443)(118,444)(119,441)
(120,442)(121,447)(122,448)(123,445)(124,446)(125,451)(126,452)(127,449)
(128,450)(129,455)(130,456)(131,453)(132,454)(133,459)(134,460)(135,457)
(136,458)(137,463)(138,464)(139,461)(140,462)(141,467)(142,468)(143,465)
(144,466)(145,471)(146,472)(147,469)(148,470)(149,475)(150,476)(151,473)
(152,474)(153,479)(154,480)(155,477)(156,478)(157,483)(158,484)(159,481)
(160,482)(161,487)(162,488)(163,485)(164,486)(165,491)(166,492)(167,489)
(168,490)(169,495)(170,496)(171,493)(172,494)(173,499)(174,500)(175,497)
(176,498)(177,503)(178,504)(179,501)(180,502)(181,507)(182,508)(183,505)
(184,506)(185,511)(186,512)(187,509)(188,510)(189,515)(190,516)(191,513)
(192,514)(193,519)(194,520)(195,517)(196,518)(197,523)(198,524)(199,521)
(200,522)(201,527)(202,528)(203,525)(204,526)(205,531)(206,532)(207,529)
(208,530)(209,535)(210,536)(211,533)(212,534)(213,539)(214,540)(215,537)
(216,538)(217,543)(218,544)(219,541)(220,542)(221,547)(222,548)(223,545)
(224,546)(225,551)(226,552)(227,549)(228,550)(229,555)(230,556)(231,553)
(232,554)(233,559)(234,560)(235,557)(236,558)(237,563)(238,564)(239,561)
(240,562)(241,567)(242,568)(243,565)(244,566)(245,571)(246,572)(247,569)
(248,570)(249,575)(250,576)(251,573)(252,574)(253,579)(254,580)(255,577)
(256,578)(257,583)(258,584)(259,581)(260,582)(261,587)(262,588)(263,585)
(264,586)(265,591)(266,592)(267,589)(268,590)(269,595)(270,596)(271,593)
(272,594)(273,599)(274,600)(275,597)(276,598)(277,603)(278,604)(279,601)
(280,602)(281,607)(282,608)(283,605)(284,606)(285,611)(286,612)(287,609)
(288,610)(289,615)(290,616)(291,613)(292,614)(293,619)(294,620)(295,617)
(296,618)(297,623)(298,624)(299,621)(300,622)(301,627)(302,628)(303,625)
(304,626)(305,631)(306,632)(307,629)(308,630)(309,635)(310,636)(311,633)
(312,634)(313,639)(314,640)(315,637)(316,638)(317,643)(318,644)(319,641)
(320,642)(321,647)(322,648)(323,645)(324,646);
s1 := Sym(648)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 13, 33)( 14, 34)
( 15, 36)( 16, 35)( 17, 29)( 18, 30)( 19, 32)( 20, 31)( 21, 25)( 22, 26)
( 23, 28)( 24, 27)( 37,105)( 38,106)( 39,108)( 40,107)( 41,101)( 42,102)
( 43,104)( 44,103)( 45, 97)( 46, 98)( 47,100)( 48, 99)( 49, 93)( 50, 94)
( 51, 96)( 52, 95)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)
( 59, 88)( 60, 87)( 61, 81)( 62, 82)( 63, 84)( 64, 83)( 65, 77)( 66, 78)
( 67, 80)( 68, 79)( 69, 73)( 70, 74)( 71, 76)( 72, 75)(109,321)(110,322)
(111,324)(112,323)(113,317)(114,318)(115,320)(116,319)(117,313)(118,314)
(119,316)(120,315)(121,309)(122,310)(123,312)(124,311)(125,305)(126,306)
(127,308)(128,307)(129,301)(130,302)(131,304)(132,303)(133,297)(134,298)
(135,300)(136,299)(137,293)(138,294)(139,296)(140,295)(141,289)(142,290)
(143,292)(144,291)(145,285)(146,286)(147,288)(148,287)(149,281)(150,282)
(151,284)(152,283)(153,277)(154,278)(155,280)(156,279)(157,273)(158,274)
(159,276)(160,275)(161,269)(162,270)(163,272)(164,271)(165,265)(166,266)
(167,268)(168,267)(169,261)(170,262)(171,264)(172,263)(173,257)(174,258)
(175,260)(176,259)(177,253)(178,254)(179,256)(180,255)(181,249)(182,250)
(183,252)(184,251)(185,245)(186,246)(187,248)(188,247)(189,241)(190,242)
(191,244)(192,243)(193,237)(194,238)(195,240)(196,239)(197,233)(198,234)
(199,236)(200,235)(201,229)(202,230)(203,232)(204,231)(205,225)(206,226)
(207,228)(208,227)(209,221)(210,222)(211,224)(212,223)(213,217)(214,218)
(215,220)(216,219)(327,328)(329,333)(330,334)(331,336)(332,335)(337,357)
(338,358)(339,360)(340,359)(341,353)(342,354)(343,356)(344,355)(345,349)
(346,350)(347,352)(348,351)(361,429)(362,430)(363,432)(364,431)(365,425)
(366,426)(367,428)(368,427)(369,421)(370,422)(371,424)(372,423)(373,417)
(374,418)(375,420)(376,419)(377,413)(378,414)(379,416)(380,415)(381,409)
(382,410)(383,412)(384,411)(385,405)(386,406)(387,408)(388,407)(389,401)
(390,402)(391,404)(392,403)(393,397)(394,398)(395,400)(396,399)(433,645)
(434,646)(435,648)(436,647)(437,641)(438,642)(439,644)(440,643)(441,637)
(442,638)(443,640)(444,639)(445,633)(446,634)(447,636)(448,635)(449,629)
(450,630)(451,632)(452,631)(453,625)(454,626)(455,628)(456,627)(457,621)
(458,622)(459,624)(460,623)(461,617)(462,618)(463,620)(464,619)(465,613)
(466,614)(467,616)(468,615)(469,609)(470,610)(471,612)(472,611)(473,605)
(474,606)(475,608)(476,607)(477,601)(478,602)(479,604)(480,603)(481,597)
(482,598)(483,600)(484,599)(485,593)(486,594)(487,596)(488,595)(489,589)
(490,590)(491,592)(492,591)(493,585)(494,586)(495,588)(496,587)(497,581)
(498,582)(499,584)(500,583)(501,577)(502,578)(503,580)(504,579)(505,573)
(506,574)(507,576)(508,575)(509,569)(510,570)(511,572)(512,571)(513,565)
(514,566)(515,568)(516,567)(517,561)(518,562)(519,564)(520,563)(521,557)
(522,558)(523,560)(524,559)(525,553)(526,554)(527,556)(528,555)(529,549)
(530,550)(531,552)(532,551)(533,545)(534,546)(535,548)(536,547)(537,541)
(538,542)(539,544)(540,543);
s2 := Sym(648)!( 1,433)( 2,436)( 3,435)( 4,434)( 5,441)( 6,444)( 7,443)
( 8,442)( 9,437)( 10,440)( 11,439)( 12,438)( 13,465)( 14,468)( 15,467)
( 16,466)( 17,461)( 18,464)( 19,463)( 20,462)( 21,457)( 22,460)( 23,459)
( 24,458)( 25,453)( 26,456)( 27,455)( 28,454)( 29,449)( 30,452)( 31,451)
( 32,450)( 33,445)( 34,448)( 35,447)( 36,446)( 37,537)( 38,540)( 39,539)
( 40,538)( 41,533)( 42,536)( 43,535)( 44,534)( 45,529)( 46,532)( 47,531)
( 48,530)( 49,525)( 50,528)( 51,527)( 52,526)( 53,521)( 54,524)( 55,523)
( 56,522)( 57,517)( 58,520)( 59,519)( 60,518)( 61,513)( 62,516)( 63,515)
( 64,514)( 65,509)( 66,512)( 67,511)( 68,510)( 69,505)( 70,508)( 71,507)
( 72,506)( 73,501)( 74,504)( 75,503)( 76,502)( 77,497)( 78,500)( 79,499)
( 80,498)( 81,493)( 82,496)( 83,495)( 84,494)( 85,489)( 86,492)( 87,491)
( 88,490)( 89,485)( 90,488)( 91,487)( 92,486)( 93,481)( 94,484)( 95,483)
( 96,482)( 97,477)( 98,480)( 99,479)(100,478)(101,473)(102,476)(103,475)
(104,474)(105,469)(106,472)(107,471)(108,470)(109,325)(110,328)(111,327)
(112,326)(113,333)(114,336)(115,335)(116,334)(117,329)(118,332)(119,331)
(120,330)(121,357)(122,360)(123,359)(124,358)(125,353)(126,356)(127,355)
(128,354)(129,349)(130,352)(131,351)(132,350)(133,345)(134,348)(135,347)
(136,346)(137,341)(138,344)(139,343)(140,342)(141,337)(142,340)(143,339)
(144,338)(145,429)(146,432)(147,431)(148,430)(149,425)(150,428)(151,427)
(152,426)(153,421)(154,424)(155,423)(156,422)(157,417)(158,420)(159,419)
(160,418)(161,413)(162,416)(163,415)(164,414)(165,409)(166,412)(167,411)
(168,410)(169,405)(170,408)(171,407)(172,406)(173,401)(174,404)(175,403)
(176,402)(177,397)(178,400)(179,399)(180,398)(181,393)(182,396)(183,395)
(184,394)(185,389)(186,392)(187,391)(188,390)(189,385)(190,388)(191,387)
(192,386)(193,381)(194,384)(195,383)(196,382)(197,377)(198,380)(199,379)
(200,378)(201,373)(202,376)(203,375)(204,374)(205,369)(206,372)(207,371)
(208,370)(209,365)(210,368)(211,367)(212,366)(213,361)(214,364)(215,363)
(216,362)(217,645)(218,648)(219,647)(220,646)(221,641)(222,644)(223,643)
(224,642)(225,637)(226,640)(227,639)(228,638)(229,633)(230,636)(231,635)
(232,634)(233,629)(234,632)(235,631)(236,630)(237,625)(238,628)(239,627)
(240,626)(241,621)(242,624)(243,623)(244,622)(245,617)(246,620)(247,619)
(248,618)(249,613)(250,616)(251,615)(252,614)(253,609)(254,612)(255,611)
(256,610)(257,605)(258,608)(259,607)(260,606)(261,601)(262,604)(263,603)
(264,602)(265,597)(266,600)(267,599)(268,598)(269,593)(270,596)(271,595)
(272,594)(273,589)(274,592)(275,591)(276,590)(277,585)(278,588)(279,587)
(280,586)(281,581)(282,584)(283,583)(284,582)(285,577)(286,580)(287,579)
(288,578)(289,573)(290,576)(291,575)(292,574)(293,569)(294,572)(295,571)
(296,570)(297,565)(298,568)(299,567)(300,566)(301,561)(302,564)(303,563)
(304,562)(305,557)(306,560)(307,559)(308,558)(309,553)(310,556)(311,555)
(312,554)(313,549)(314,552)(315,551)(316,550)(317,545)(318,548)(319,547)
(320,546)(321,541)(322,544)(323,543)(324,542);
poly := sub<Sym(648)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope