include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,5}*1320d
if this polytope has a name.
Group : SmallGroup(1320,133)
Rank : 3
Schlafli Type : {12,5}
Number of vertices, edges, etc : 132, 330, 55
Order of s0s1s2 : 10
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 6)( 4, 8)( 5,11)( 7, 9);;
s1 := ( 1, 5)( 2, 3)( 4,10)( 6, 7)( 8, 9)(11,12);;
s2 := ( 1, 6)( 2, 3)( 4, 9)( 5,11)( 7, 8)(10,12);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(12)!( 1, 3)( 2, 6)( 4, 8)( 5,11)( 7, 9);
s1 := Sym(12)!( 1, 5)( 2, 3)( 4,10)( 6, 7)( 8, 9)(11,12);
s2 := Sym(12)!( 1, 6)( 2, 3)( 4, 9)( 5,11)( 7, 8)(10,12);
poly := sub<Sym(12)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2 >;
References : None.
to this polytope