Polytope of Type {5,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10}*1320c
if this polytope has a name.
Group : SmallGroup(1320,134)
Rank : 3
Schlafli Type : {5,10}
Number of vertices, edges, etc : 66, 330, 132
Order of s0s1s2 : 10
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,5}*660
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6, 7)( 8,11);;
s1 := ( 3, 5)( 4, 6)( 7,11)( 9,10);;
s2 := ( 1,10)( 5, 7)( 6, 9)( 8,11)(12,13);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(13)!( 2, 3)( 5, 9)( 6, 7)( 8,11);
s1 := Sym(13)!( 3, 5)( 4, 6)( 7,11)( 9,10);
s2 := Sym(13)!( 1,10)( 5, 7)( 6, 9)( 8,11)(12,13);
poly := sub<Sym(13)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s2 >; 
 
References : None.
to this polytope