Polytope of Type {8,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,4}*1344b
if this polytope has a name.
Group : SmallGroup(1344,11289)
Rank : 3
Schlafli Type : {8,4}
Number of vertices, edges, etc : 168, 336, 84
Order of s0s1s2 : 28
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,4}*672d
   4-fold quotients : {8,4}*336b
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 2)( 3, 5)( 4, 8)( 6, 7)( 9,11)(10,12);;
s1 := ( 2, 5)( 3, 7)( 6, 8)(10,12);;
s2 := ( 1, 2)( 3, 8)( 4, 5)( 9,10)(11,12);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!( 1, 2)( 3, 5)( 4, 8)( 6, 7)( 9,11)(10,12);
s1 := Sym(12)!( 2, 5)( 3, 7)( 6, 8)(10,12);
s2 := Sym(12)!( 1, 2)( 3, 8)( 4, 5)( 9,10)(11,12);
poly := sub<Sym(12)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope