Polytope of Type {7,2,3,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,3,12}*1344
if this polytope has a name.
Group : SmallGroup(1344,11355)
Rank : 5
Schlafli Type : {7,2,3,12}
Number of vertices, edges, etc : 7, 7, 4, 24, 16
Order of s0s1s2s3s4 : 56
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7,2,3,6}*672
   4-fold quotients : {7,2,3,3}*336
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 9,10)(11,12)(13,26)(14,29)(16,21)(17,20)(18,38)(19,41)(22,44)(23,45)
(24,30)(25,27)(28,49)(31,48)(32,33)(34,50)(35,52)(36,39)(37,42)(40,54)(43,55)
(46,47);;
s3 := ( 8,11)( 9,20)(10,16)(13,49)(14,48)(15,32)(17,21)(18,54)(19,55)(22,47)
(23,46)(24,31)(25,28)(26,27)(29,30)(34,51)(35,53)(36,40)(37,43)(38,39)(41,42)
(44,45);;
s4 := ( 8,51)( 9,46)(10,47)(11,40)(12,54)(13,19)(14,18)(15,53)(16,28)(17,48)
(20,31)(21,49)(22,37)(23,36)(24,35)(25,34)(26,41)(27,50)(29,38)(30,52)(32,43)
(33,55)(39,45)(42,44);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3, s4*s2*s3*s4*s3*s4*s3*s4*s2*s3*s4*s3*s4*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(55)!(2,3)(4,5)(6,7);
s1 := Sym(55)!(1,2)(3,4)(5,6);
s2 := Sym(55)!( 9,10)(11,12)(13,26)(14,29)(16,21)(17,20)(18,38)(19,41)(22,44)
(23,45)(24,30)(25,27)(28,49)(31,48)(32,33)(34,50)(35,52)(36,39)(37,42)(40,54)
(43,55)(46,47);
s3 := Sym(55)!( 8,11)( 9,20)(10,16)(13,49)(14,48)(15,32)(17,21)(18,54)(19,55)
(22,47)(23,46)(24,31)(25,28)(26,27)(29,30)(34,51)(35,53)(36,40)(37,43)(38,39)
(41,42)(44,45);
s4 := Sym(55)!( 8,51)( 9,46)(10,47)(11,40)(12,54)(13,19)(14,18)(15,53)(16,28)
(17,48)(20,31)(21,49)(22,37)(23,36)(24,35)(25,34)(26,41)(27,50)(29,38)(30,52)
(32,43)(33,55)(39,45)(42,44);
poly := sub<Sym(55)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s3*s4*s3*s4*s2*s3*s4*s3*s4*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope