Polytope of Type {2,14,4,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,14,4,2,3}*1344
if this polytope has a name.
Group : SmallGroup(1344,11527)
Rank : 6
Schlafli Type : {2,14,4,2,3}
Number of vertices, edges, etc : 2, 14, 28, 4, 3, 3
Order of s0s1s2s3s4s5 : 84
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,14,2,2,3}*672
   4-fold quotients : {2,7,2,2,3}*336
   7-fold quotients : {2,2,4,2,3}*192
   14-fold quotients : {2,2,2,2,3}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 8, 9)(10,11)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)
(27,28)(29,30);;
s2 := ( 3, 5)( 4,13)( 6,10)( 7, 8)( 9,21)(11,17)(12,19)(14,15)(16,27)(20,25)
(22,23)(24,28)(26,29);;
s3 := ( 3, 4)( 5, 8)( 6, 9)( 7,12)(10,15)(11,16)(13,19)(14,20)(17,23)(18,24)
(21,25)(22,26)(27,29)(28,30);;
s4 := (32,33);;
s5 := (31,32);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!(1,2);
s1 := Sym(33)!( 5, 6)( 8, 9)(10,11)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26)(27,28)(29,30);
s2 := Sym(33)!( 3, 5)( 4,13)( 6,10)( 7, 8)( 9,21)(11,17)(12,19)(14,15)(16,27)
(20,25)(22,23)(24,28)(26,29);
s3 := Sym(33)!( 3, 4)( 5, 8)( 6, 9)( 7,12)(10,15)(11,16)(13,19)(14,20)(17,23)
(18,24)(21,25)(22,26)(27,29)(28,30);
s4 := Sym(33)!(32,33);
s5 := Sym(33)!(31,32);
poly := sub<Sym(33)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope