include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,28,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,28,6}*1344b
if this polytope has a name.
Group : SmallGroup(1344,11695)
Rank : 5
Schlafli Type : {2,2,28,6}
Number of vertices, edges, etc : 2, 2, 28, 84, 6
Order of s0s1s2s3s4 : 42
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
7-fold quotients : {2,2,4,6}*192b
14-fold quotients : {2,2,4,3}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 5, 7)( 6, 8)( 9,31)(10,32)(11,29)(12,30)(13,27)(14,28)(15,25)(16,26)
(17,23)(18,24)(19,21)(20,22);;
s3 := ( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)(17,25)(18,27)
(19,26)(20,28)(22,23);;
s4 := ( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s2*s3*s4*s3*s4*s2*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3,
s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(32)!(1,2);
s1 := Sym(32)!(3,4);
s2 := Sym(32)!( 5, 7)( 6, 8)( 9,31)(10,32)(11,29)(12,30)(13,27)(14,28)(15,25)
(16,26)(17,23)(18,24)(19,21)(20,22);
s3 := Sym(32)!( 5, 9)( 6,11)( 7,10)( 8,12)(13,29)(14,31)(15,30)(16,32)(17,25)
(18,27)(19,26)(20,28)(22,23);
s4 := Sym(32)!( 6, 8)(10,12)(14,16)(18,20)(22,24)(26,28)(30,32);
poly := sub<Sym(32)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s2*s3*s4*s3*s4*s2*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s2*s3*s4*s3*s2*s3*s2*s3,
s3*s2*s3*s2*s3*s2*s3*s2*s3*s4*s2*s3*s4*s2*s3*s4*s2 >;
to this polytope