Polytope of Type {7,2,4,3,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,4,3,4}*1344
if this polytope has a name.
Group : SmallGroup(1344,11696)
Rank : 6
Schlafli Type : {7,2,4,3,4}
Number of vertices, edges, etc : 7, 7, 4, 6, 6, 4
Order of s0s1s2s3s4s5 : 21
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := ( 8, 9)(10,13)(11,12)(14,21)(15,22)(16,17)(18,20)(19,23);;
s3 := ( 9,11)(10,14)(13,18)(16,21)(17,20)(19,22);;
s4 := (10,15)(11,12)(13,22)(16,23)(17,19)(18,20);;
s5 := ( 8,15)( 9,22)(10,14)(11,19)(12,23)(13,21)(16,18)(17,20);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3, s4*s5*s4*s5*s4*s5*s4*s5, 
s4*s2*s3*s4*s2*s3*s4*s2*s3, s3*s5*s4*s3*s5*s4*s3*s5*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(23)!(2,3)(4,5)(6,7);
s1 := Sym(23)!(1,2)(3,4)(5,6);
s2 := Sym(23)!( 8, 9)(10,13)(11,12)(14,21)(15,22)(16,17)(18,20)(19,23);
s3 := Sym(23)!( 9,11)(10,14)(13,18)(16,21)(17,20)(19,22);
s4 := Sym(23)!(10,15)(11,12)(13,22)(16,23)(17,19)(18,20);
s5 := Sym(23)!( 8,15)( 9,22)(10,14)(11,19)(12,23)(13,21)(16,18)(17,20);
poly := sub<Sym(23)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s5*s4*s5*s4*s5*s4*s5, s4*s2*s3*s4*s2*s3*s4*s2*s3, 
s3*s5*s4*s3*s5*s4*s3*s5*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope