Polytope of Type {6,56}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,56}*1344a
if this polytope has a name.
Group : SmallGroup(1344,6320)
Rank : 3
Schlafli Type : {6,56}
Number of vertices, edges, etc : 12, 336, 112
Order of s0s1s2 : 21
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   4-fold quotients : {6,28}*336b
   7-fold quotients : {6,8}*192a
   28-fold quotients : {6,4}*48b
   56-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  6)(  9, 14)( 10, 13)( 11, 15)( 12, 16)( 19, 20)( 21, 22)
( 25, 30)( 26, 29)( 27, 31)( 28, 32)( 35, 36)( 37, 38)( 41, 46)( 42, 45)
( 43, 47)( 44, 48)( 51, 52)( 53, 54)( 57, 62)( 58, 61)( 59, 63)( 60, 64)
( 67, 68)( 69, 70)( 73, 78)( 74, 77)( 75, 79)( 76, 80)( 83, 84)( 85, 86)
( 89, 94)( 90, 93)( 91, 95)( 92, 96)( 99,100)(101,102)(105,110)(106,109)
(107,111)(108,112);;
s1 := (  2,  4)(  5, 13)(  6, 16)(  7, 15)(  8, 14)(  9, 11)( 17, 97)( 18,100)
( 19, 99)( 20, 98)( 21,109)( 22,112)( 23,111)( 24,110)( 25,107)( 26,106)
( 27,105)( 28,108)( 29,101)( 30,104)( 31,103)( 32,102)( 33, 81)( 34, 84)
( 35, 83)( 36, 82)( 37, 93)( 38, 96)( 39, 95)( 40, 94)( 41, 91)( 42, 90)
( 43, 89)( 44, 92)( 45, 85)( 46, 88)( 47, 87)( 48, 86)( 49, 65)( 50, 68)
( 51, 67)( 52, 66)( 53, 77)( 54, 80)( 55, 79)( 56, 78)( 57, 75)( 58, 74)
( 59, 73)( 60, 76)( 61, 69)( 62, 72)( 63, 71)( 64, 70);;
s2 := (  1, 23)(  2, 24)(  3, 21)(  4, 22)(  5, 19)(  6, 20)(  7, 17)(  8, 18)
(  9, 29)( 10, 30)( 11, 31)( 12, 32)( 13, 25)( 14, 26)( 15, 27)( 16, 28)
( 33,103)( 34,104)( 35,101)( 36,102)( 37, 99)( 38,100)( 39, 97)( 40, 98)
( 41,109)( 42,110)( 43,111)( 44,112)( 45,105)( 46,106)( 47,107)( 48,108)
( 49, 87)( 50, 88)( 51, 85)( 52, 86)( 53, 83)( 54, 84)( 55, 81)( 56, 82)
( 57, 93)( 58, 94)( 59, 95)( 60, 96)( 61, 89)( 62, 90)( 63, 91)( 64, 92)
( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 77)( 74, 78)( 75, 79)( 76, 80);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(112)!(  3,  4)(  5,  6)(  9, 14)( 10, 13)( 11, 15)( 12, 16)( 19, 20)
( 21, 22)( 25, 30)( 26, 29)( 27, 31)( 28, 32)( 35, 36)( 37, 38)( 41, 46)
( 42, 45)( 43, 47)( 44, 48)( 51, 52)( 53, 54)( 57, 62)( 58, 61)( 59, 63)
( 60, 64)( 67, 68)( 69, 70)( 73, 78)( 74, 77)( 75, 79)( 76, 80)( 83, 84)
( 85, 86)( 89, 94)( 90, 93)( 91, 95)( 92, 96)( 99,100)(101,102)(105,110)
(106,109)(107,111)(108,112);
s1 := Sym(112)!(  2,  4)(  5, 13)(  6, 16)(  7, 15)(  8, 14)(  9, 11)( 17, 97)
( 18,100)( 19, 99)( 20, 98)( 21,109)( 22,112)( 23,111)( 24,110)( 25,107)
( 26,106)( 27,105)( 28,108)( 29,101)( 30,104)( 31,103)( 32,102)( 33, 81)
( 34, 84)( 35, 83)( 36, 82)( 37, 93)( 38, 96)( 39, 95)( 40, 94)( 41, 91)
( 42, 90)( 43, 89)( 44, 92)( 45, 85)( 46, 88)( 47, 87)( 48, 86)( 49, 65)
( 50, 68)( 51, 67)( 52, 66)( 53, 77)( 54, 80)( 55, 79)( 56, 78)( 57, 75)
( 58, 74)( 59, 73)( 60, 76)( 61, 69)( 62, 72)( 63, 71)( 64, 70);
s2 := Sym(112)!(  1, 23)(  2, 24)(  3, 21)(  4, 22)(  5, 19)(  6, 20)(  7, 17)
(  8, 18)(  9, 29)( 10, 30)( 11, 31)( 12, 32)( 13, 25)( 14, 26)( 15, 27)
( 16, 28)( 33,103)( 34,104)( 35,101)( 36,102)( 37, 99)( 38,100)( 39, 97)
( 40, 98)( 41,109)( 42,110)( 43,111)( 44,112)( 45,105)( 46,106)( 47,107)
( 48,108)( 49, 87)( 50, 88)( 51, 85)( 52, 86)( 53, 83)( 54, 84)( 55, 81)
( 56, 82)( 57, 93)( 58, 94)( 59, 95)( 60, 96)( 61, 89)( 62, 90)( 63, 91)
( 64, 92)( 65, 71)( 66, 72)( 67, 69)( 68, 70)( 73, 77)( 74, 78)( 75, 79)
( 76, 80);
poly := sub<Sym(112)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope