include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,6,2,7}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6,2,7}*1344
if this polytope has a name.
Group : SmallGroup(1344,8561)
Rank : 5
Schlafli Type : {8,6,2,7}
Number of vertices, edges, etc : 8, 24, 6, 7, 7
Order of s0s1s2s3s4 : 168
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,6,2,7}*672a
3-fold quotients : {8,2,2,7}*448
4-fold quotients : {2,6,2,7}*336
6-fold quotients : {4,2,2,7}*224
8-fold quotients : {2,3,2,7}*168
12-fold quotients : {2,2,2,7}*112
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 6, 9)( 7,10)( 8,11)(12,15)(13,16)(14,17)(18,21)(19,22);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,13)(10,12)(11,14)(15,19)(16,18)(17,20)
(21,24)(22,23);;
s2 := ( 1, 3)( 2, 6)( 5, 9)( 8,12)(11,15)(14,18)(17,21)(20,23);;
s3 := (26,27)(28,29)(30,31);;
s4 := (25,26)(27,28)(29,30);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!( 2, 5)( 6, 9)( 7,10)( 8,11)(12,15)(13,16)(14,17)(18,21)(19,22);
s1 := Sym(31)!( 1, 2)( 3, 7)( 4, 6)( 5, 8)( 9,13)(10,12)(11,14)(15,19)(16,18)
(17,20)(21,24)(22,23);
s2 := Sym(31)!( 1, 3)( 2, 6)( 5, 9)( 8,12)(11,15)(14,18)(17,21)(20,23);
s3 := Sym(31)!(26,27)(28,29)(30,31);
s4 := Sym(31)!(25,26)(27,28)(29,30);
poly := sub<Sym(31)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope