include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,116}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,116}*1392b
if this polytope has a name.
Group : SmallGroup(1392,185)
Rank : 3
Schlafli Type : {6,116}
Number of vertices, edges, etc : 6, 348, 116
Order of s0s1s2 : 87
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
29-fold quotients : {6,4}*48b
58-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)( 63, 64)
( 67, 68)( 71, 72)( 75, 76)( 79, 80)( 83, 84)( 87, 88)( 91, 92)( 95, 96)
( 99,100)(103,104)(107,108)(111,112)(115,116);;
s1 := ( 2, 4)( 5,113)( 6,116)( 7,115)( 8,114)( 9,109)( 10,112)( 11,111)
( 12,110)( 13,105)( 14,108)( 15,107)( 16,106)( 17,101)( 18,104)( 19,103)
( 20,102)( 21, 97)( 22,100)( 23, 99)( 24, 98)( 25, 93)( 26, 96)( 27, 95)
( 28, 94)( 29, 89)( 30, 92)( 31, 91)( 32, 90)( 33, 85)( 34, 88)( 35, 87)
( 36, 86)( 37, 81)( 38, 84)( 39, 83)( 40, 82)( 41, 77)( 42, 80)( 43, 79)
( 44, 78)( 45, 73)( 46, 76)( 47, 75)( 48, 74)( 49, 69)( 50, 72)( 51, 71)
( 52, 70)( 53, 65)( 54, 68)( 55, 67)( 56, 66)( 57, 61)( 58, 64)( 59, 63)
( 60, 62);;
s2 := ( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,114)( 10,113)( 11,116)( 12,115)
( 13,110)( 14,109)( 15,112)( 16,111)( 17,106)( 18,105)( 19,108)( 20,107)
( 21,102)( 22,101)( 23,104)( 24,103)( 25, 98)( 26, 97)( 27,100)( 28, 99)
( 29, 94)( 30, 93)( 31, 96)( 32, 95)( 33, 90)( 34, 89)( 35, 92)( 36, 91)
( 37, 86)( 38, 85)( 39, 88)( 40, 87)( 41, 82)( 42, 81)( 43, 84)( 44, 83)
( 45, 78)( 46, 77)( 47, 80)( 48, 79)( 49, 74)( 50, 73)( 51, 76)( 52, 75)
( 53, 70)( 54, 69)( 55, 72)( 56, 71)( 57, 66)( 58, 65)( 59, 68)( 60, 67)
( 61, 62)( 63, 64);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(116)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)
( 63, 64)( 67, 68)( 71, 72)( 75, 76)( 79, 80)( 83, 84)( 87, 88)( 91, 92)
( 95, 96)( 99,100)(103,104)(107,108)(111,112)(115,116);
s1 := Sym(116)!( 2, 4)( 5,113)( 6,116)( 7,115)( 8,114)( 9,109)( 10,112)
( 11,111)( 12,110)( 13,105)( 14,108)( 15,107)( 16,106)( 17,101)( 18,104)
( 19,103)( 20,102)( 21, 97)( 22,100)( 23, 99)( 24, 98)( 25, 93)( 26, 96)
( 27, 95)( 28, 94)( 29, 89)( 30, 92)( 31, 91)( 32, 90)( 33, 85)( 34, 88)
( 35, 87)( 36, 86)( 37, 81)( 38, 84)( 39, 83)( 40, 82)( 41, 77)( 42, 80)
( 43, 79)( 44, 78)( 45, 73)( 46, 76)( 47, 75)( 48, 74)( 49, 69)( 50, 72)
( 51, 71)( 52, 70)( 53, 65)( 54, 68)( 55, 67)( 56, 66)( 57, 61)( 58, 64)
( 59, 63)( 60, 62);
s2 := Sym(116)!( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,114)( 10,113)( 11,116)
( 12,115)( 13,110)( 14,109)( 15,112)( 16,111)( 17,106)( 18,105)( 19,108)
( 20,107)( 21,102)( 22,101)( 23,104)( 24,103)( 25, 98)( 26, 97)( 27,100)
( 28, 99)( 29, 94)( 30, 93)( 31, 96)( 32, 95)( 33, 90)( 34, 89)( 35, 92)
( 36, 91)( 37, 86)( 38, 85)( 39, 88)( 40, 87)( 41, 82)( 42, 81)( 43, 84)
( 44, 83)( 45, 78)( 46, 77)( 47, 80)( 48, 79)( 49, 74)( 50, 73)( 51, 76)
( 52, 75)( 53, 70)( 54, 69)( 55, 72)( 56, 71)( 57, 66)( 58, 65)( 59, 68)
( 60, 67)( 61, 62)( 63, 64);
poly := sub<Sym(116)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope