include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {39,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {39,6}*1404
if this polytope has a name.
Group : SmallGroup(1404,122)
Rank : 3
Schlafli Type : {39,6}
Number of vertices, edges, etc : 117, 351, 18
Order of s0s1s2 : 78
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {39,6}*468
9-fold quotients : {39,2}*156
13-fold quotients : {3,6}*108
27-fold quotients : {13,2}*52
39-fold quotients : {3,6}*36
117-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 37)( 5, 38)( 6, 39)( 7, 34)( 8, 35)( 9, 36)( 10, 31)( 11, 32)
( 12, 33)( 13, 28)( 14, 29)( 15, 30)( 16, 25)( 17, 26)( 18, 27)( 19, 22)
( 20, 23)( 21, 24)( 40, 79)( 41, 80)( 42, 81)( 43,115)( 44,116)( 45,117)
( 46,112)( 47,113)( 48,114)( 49,109)( 50,110)( 51,111)( 52,106)( 53,107)
( 54,108)( 55,103)( 56,104)( 57,105)( 58,100)( 59,101)( 60,102)( 61, 97)
( 62, 98)( 63, 99)( 64, 94)( 65, 95)( 66, 96)( 67, 91)( 68, 92)( 69, 93)
( 70, 88)( 71, 89)( 72, 90)( 73, 85)( 74, 86)( 75, 87)( 76, 82)( 77, 83)
( 78, 84);;
s1 := ( 1, 44)( 2, 45)( 3, 43)( 4, 41)( 5, 42)( 6, 40)( 7, 77)( 8, 78)
( 9, 76)( 10, 74)( 11, 75)( 12, 73)( 13, 71)( 14, 72)( 15, 70)( 16, 68)
( 17, 69)( 18, 67)( 19, 65)( 20, 66)( 21, 64)( 22, 62)( 23, 63)( 24, 61)
( 25, 59)( 26, 60)( 27, 58)( 28, 56)( 29, 57)( 30, 55)( 31, 53)( 32, 54)
( 33, 52)( 34, 50)( 35, 51)( 36, 49)( 37, 47)( 38, 48)( 39, 46)( 79, 82)
( 80, 83)( 81, 84)( 85,115)( 86,116)( 87,117)( 88,112)( 89,113)( 90,114)
( 91,109)( 92,110)( 93,111)( 94,106)( 95,107)( 96,108)( 97,103)( 98,104)
( 99,105);;
s2 := ( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 40, 79)( 41, 81)( 42, 80)
( 43, 82)( 44, 84)( 45, 83)( 46, 85)( 47, 87)( 48, 86)( 49, 88)( 50, 90)
( 51, 89)( 52, 91)( 53, 93)( 54, 92)( 55, 94)( 56, 96)( 57, 95)( 58, 97)
( 59, 99)( 60, 98)( 61,100)( 62,102)( 63,101)( 64,103)( 65,105)( 66,104)
( 67,106)( 68,108)( 69,107)( 70,109)( 71,111)( 72,110)( 73,112)( 74,114)
( 75,113)( 76,115)( 77,117)( 78,116);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(117)!( 4, 37)( 5, 38)( 6, 39)( 7, 34)( 8, 35)( 9, 36)( 10, 31)
( 11, 32)( 12, 33)( 13, 28)( 14, 29)( 15, 30)( 16, 25)( 17, 26)( 18, 27)
( 19, 22)( 20, 23)( 21, 24)( 40, 79)( 41, 80)( 42, 81)( 43,115)( 44,116)
( 45,117)( 46,112)( 47,113)( 48,114)( 49,109)( 50,110)( 51,111)( 52,106)
( 53,107)( 54,108)( 55,103)( 56,104)( 57,105)( 58,100)( 59,101)( 60,102)
( 61, 97)( 62, 98)( 63, 99)( 64, 94)( 65, 95)( 66, 96)( 67, 91)( 68, 92)
( 69, 93)( 70, 88)( 71, 89)( 72, 90)( 73, 85)( 74, 86)( 75, 87)( 76, 82)
( 77, 83)( 78, 84);
s1 := Sym(117)!( 1, 44)( 2, 45)( 3, 43)( 4, 41)( 5, 42)( 6, 40)( 7, 77)
( 8, 78)( 9, 76)( 10, 74)( 11, 75)( 12, 73)( 13, 71)( 14, 72)( 15, 70)
( 16, 68)( 17, 69)( 18, 67)( 19, 65)( 20, 66)( 21, 64)( 22, 62)( 23, 63)
( 24, 61)( 25, 59)( 26, 60)( 27, 58)( 28, 56)( 29, 57)( 30, 55)( 31, 53)
( 32, 54)( 33, 52)( 34, 50)( 35, 51)( 36, 49)( 37, 47)( 38, 48)( 39, 46)
( 79, 82)( 80, 83)( 81, 84)( 85,115)( 86,116)( 87,117)( 88,112)( 89,113)
( 90,114)( 91,109)( 92,110)( 93,111)( 94,106)( 95,107)( 96,108)( 97,103)
( 98,104)( 99,105);
s2 := Sym(117)!( 2, 3)( 5, 6)( 8, 9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 40, 79)( 41, 81)
( 42, 80)( 43, 82)( 44, 84)( 45, 83)( 46, 85)( 47, 87)( 48, 86)( 49, 88)
( 50, 90)( 51, 89)( 52, 91)( 53, 93)( 54, 92)( 55, 94)( 56, 96)( 57, 95)
( 58, 97)( 59, 99)( 60, 98)( 61,100)( 62,102)( 63,101)( 64,103)( 65,105)
( 66,104)( 67,106)( 68,108)( 69,107)( 70,109)( 71,111)( 72,110)( 73,112)
( 74,114)( 75,113)( 76,115)( 77,117)( 78,116);
poly := sub<Sym(117)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s0*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope