include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {22,16,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {22,16,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,17614)
Rank : 4
Schlafli Type : {22,16,2}
Number of vertices, edges, etc : 22, 176, 16, 2
Order of s0s1s2s3 : 176
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {22,8,2}*704
4-fold quotients : {22,4,2}*352
8-fold quotients : {22,2,2}*176
11-fold quotients : {2,16,2}*128
16-fold quotients : {11,2,2}*88
22-fold quotients : {2,8,2}*64
44-fold quotients : {2,4,2}*32
88-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 11)( 3, 10)( 4, 9)( 5, 8)( 6, 7)( 13, 22)( 14, 21)( 15, 20)
( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)( 35, 44)
( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)( 49, 52)
( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)( 69, 76)
( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)( 83, 84)
( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)(101,110)(102,109)(103,108)
(104,107)(105,106)(112,121)(113,120)(114,119)(115,118)(116,117)(123,132)
(124,131)(125,130)(126,129)(127,128)(134,143)(135,142)(136,141)(137,140)
(138,139)(145,154)(146,153)(147,152)(148,151)(149,150)(156,165)(157,164)
(158,163)(159,162)(160,161)(167,176)(168,175)(169,174)(170,173)(171,172);;
s1 := ( 1, 2)( 3, 11)( 4, 10)( 5, 9)( 6, 8)( 12, 13)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 23, 35)( 24, 34)( 25, 44)( 26, 43)( 27, 42)( 28, 41)
( 29, 40)( 30, 39)( 31, 38)( 32, 37)( 33, 36)( 45, 68)( 46, 67)( 47, 77)
( 48, 76)( 49, 75)( 50, 74)( 51, 73)( 52, 72)( 53, 71)( 54, 70)( 55, 69)
( 56, 79)( 57, 78)( 58, 88)( 59, 87)( 60, 86)( 61, 85)( 62, 84)( 63, 83)
( 64, 82)( 65, 81)( 66, 80)( 89,134)( 90,133)( 91,143)( 92,142)( 93,141)
( 94,140)( 95,139)( 96,138)( 97,137)( 98,136)( 99,135)(100,145)(101,144)
(102,154)(103,153)(104,152)(105,151)(106,150)(107,149)(108,148)(109,147)
(110,146)(111,167)(112,166)(113,176)(114,175)(115,174)(116,173)(117,172)
(118,171)(119,170)(120,169)(121,168)(122,156)(123,155)(124,165)(125,164)
(126,163)(127,162)(128,161)(129,160)(130,159)(131,158)(132,157);;
s2 := ( 1, 89)( 2, 90)( 3, 91)( 4, 92)( 5, 93)( 6, 94)( 7, 95)( 8, 96)
( 9, 97)( 10, 98)( 11, 99)( 12,100)( 13,101)( 14,102)( 15,103)( 16,104)
( 17,105)( 18,106)( 19,107)( 20,108)( 21,109)( 22,110)( 23,122)( 24,123)
( 25,124)( 26,125)( 27,126)( 28,127)( 29,128)( 30,129)( 31,130)( 32,131)
( 33,132)( 34,111)( 35,112)( 36,113)( 37,114)( 38,115)( 39,116)( 40,117)
( 41,118)( 42,119)( 43,120)( 44,121)( 45,155)( 46,156)( 47,157)( 48,158)
( 49,159)( 50,160)( 51,161)( 52,162)( 53,163)( 54,164)( 55,165)( 56,166)
( 57,167)( 58,168)( 59,169)( 60,170)( 61,171)( 62,172)( 63,173)( 64,174)
( 65,175)( 66,176)( 67,133)( 68,134)( 69,135)( 70,136)( 71,137)( 72,138)
( 73,139)( 74,140)( 75,141)( 76,142)( 77,143)( 78,144)( 79,145)( 80,146)
( 81,147)( 82,148)( 83,149)( 84,150)( 85,151)( 86,152)( 87,153)( 88,154);;
s3 := (177,178);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(178)!( 2, 11)( 3, 10)( 4, 9)( 5, 8)( 6, 7)( 13, 22)( 14, 21)
( 15, 20)( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)
( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)
( 49, 52)( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)
( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)
( 83, 84)( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)(101,110)(102,109)
(103,108)(104,107)(105,106)(112,121)(113,120)(114,119)(115,118)(116,117)
(123,132)(124,131)(125,130)(126,129)(127,128)(134,143)(135,142)(136,141)
(137,140)(138,139)(145,154)(146,153)(147,152)(148,151)(149,150)(156,165)
(157,164)(158,163)(159,162)(160,161)(167,176)(168,175)(169,174)(170,173)
(171,172);
s1 := Sym(178)!( 1, 2)( 3, 11)( 4, 10)( 5, 9)( 6, 8)( 12, 13)( 14, 22)
( 15, 21)( 16, 20)( 17, 19)( 23, 35)( 24, 34)( 25, 44)( 26, 43)( 27, 42)
( 28, 41)( 29, 40)( 30, 39)( 31, 38)( 32, 37)( 33, 36)( 45, 68)( 46, 67)
( 47, 77)( 48, 76)( 49, 75)( 50, 74)( 51, 73)( 52, 72)( 53, 71)( 54, 70)
( 55, 69)( 56, 79)( 57, 78)( 58, 88)( 59, 87)( 60, 86)( 61, 85)( 62, 84)
( 63, 83)( 64, 82)( 65, 81)( 66, 80)( 89,134)( 90,133)( 91,143)( 92,142)
( 93,141)( 94,140)( 95,139)( 96,138)( 97,137)( 98,136)( 99,135)(100,145)
(101,144)(102,154)(103,153)(104,152)(105,151)(106,150)(107,149)(108,148)
(109,147)(110,146)(111,167)(112,166)(113,176)(114,175)(115,174)(116,173)
(117,172)(118,171)(119,170)(120,169)(121,168)(122,156)(123,155)(124,165)
(125,164)(126,163)(127,162)(128,161)(129,160)(130,159)(131,158)(132,157);
s2 := Sym(178)!( 1, 89)( 2, 90)( 3, 91)( 4, 92)( 5, 93)( 6, 94)( 7, 95)
( 8, 96)( 9, 97)( 10, 98)( 11, 99)( 12,100)( 13,101)( 14,102)( 15,103)
( 16,104)( 17,105)( 18,106)( 19,107)( 20,108)( 21,109)( 22,110)( 23,122)
( 24,123)( 25,124)( 26,125)( 27,126)( 28,127)( 29,128)( 30,129)( 31,130)
( 32,131)( 33,132)( 34,111)( 35,112)( 36,113)( 37,114)( 38,115)( 39,116)
( 40,117)( 41,118)( 42,119)( 43,120)( 44,121)( 45,155)( 46,156)( 47,157)
( 48,158)( 49,159)( 50,160)( 51,161)( 52,162)( 53,163)( 54,164)( 55,165)
( 56,166)( 57,167)( 58,168)( 59,169)( 60,170)( 61,171)( 62,172)( 63,173)
( 64,174)( 65,175)( 66,176)( 67,133)( 68,134)( 69,135)( 70,136)( 71,137)
( 72,138)( 73,139)( 74,140)( 75,141)( 76,142)( 77,143)( 78,144)( 79,145)
( 80,146)( 81,147)( 82,148)( 83,149)( 84,150)( 85,151)( 86,152)( 87,153)
( 88,154);
s3 := Sym(178)!(177,178);
poly := sub<Sym(178)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope