include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {22,4,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {22,4,4,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,17724)
Rank : 5
Schlafli Type : {22,4,4,2}
Number of vertices, edges, etc : 22, 44, 8, 4, 2
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {22,2,4,2}*704, {22,4,2,2}*704
4-fold quotients : {11,2,4,2}*352, {22,2,2,2}*352
8-fold quotients : {11,2,2,2}*176
11-fold quotients : {2,4,4,2}*128
22-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
44-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)
(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)(46,55)
(47,54)(48,53)(49,52)(50,51)(57,66)(58,65)(59,64)(60,63)(61,62)(68,77)(69,76)
(70,75)(71,74)(72,73)(79,88)(80,87)(81,86)(82,85)(83,84);;
s1 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)(17,19)
(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,57)
(46,56)(47,66)(48,65)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)(67,79)
(68,78)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,80);;
s2 := ( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)
(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)
(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)
(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)
(44,88);;
s3 := (45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)
(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)
(66,88);;
s4 := (89,90);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(90)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)
(17,18)(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)
(46,55)(47,54)(48,53)(49,52)(50,51)(57,66)(58,65)(59,64)(60,63)(61,62)(68,77)
(69,76)(70,75)(71,74)(72,73)(79,88)(80,87)(81,86)(82,85)(83,84);
s1 := Sym(90)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)
(17,19)(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)
(45,57)(46,56)(47,66)(48,65)(49,64)(50,63)(51,62)(52,61)(53,60)(54,59)(55,58)
(67,79)(68,78)(69,88)(70,87)(71,86)(72,85)(73,84)(74,83)(75,82)(76,81)(77,80);
s2 := Sym(90)!( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)
(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)
(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)
(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)
(43,87)(44,88);
s3 := Sym(90)!(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)
(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)
(65,87)(66,88);
s4 := Sym(90)!(89,90);
poly := sub<Sym(90)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope