include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,22,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,22,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,17724)
Rank : 5
Schlafli Type : {4,4,22,2}
Number of vertices, edges, etc : 4, 8, 44, 22, 2
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,22,2}*704, {4,2,22,2}*704
4-fold quotients : {4,2,11,2}*352, {2,2,22,2}*352
8-fold quotients : {2,2,11,2}*176
11-fold quotients : {4,4,2,2}*128
22-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
44-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)
(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)
(77,88);;
s1 := ( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)(10,54)
(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)
(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)
(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)(43,87)
(44,88);;
s2 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)
(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)(45,67)
(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,78)
(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79);;
s3 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)(17,19)
(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,46)
(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)(69,77)
(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85);;
s4 := (89,90);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(90)!(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)
(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)
(76,87)(77,88);
s1 := Sym(90)!( 1,45)( 2,46)( 3,47)( 4,48)( 5,49)( 6,50)( 7,51)( 8,52)( 9,53)
(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)
(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)
(32,76)(33,77)(34,78)(35,79)(36,80)(37,81)(38,82)(39,83)(40,84)(41,85)(42,86)
(43,87)(44,88);
s2 := Sym(90)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)
(17,18)(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)
(45,67)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)
(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79);
s3 := Sym(90)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)
(17,19)(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)
(45,46)(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)
(69,77)(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85);
s4 := Sym(90)!(89,90);
poly := sub<Sym(90)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope