include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {44,4,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {44,4,2,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,17727)
Rank : 5
Schlafli Type : {44,4,2,2}
Number of vertices, edges, etc : 44, 88, 4, 2, 2
Order of s0s1s2s3s4 : 44
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {44,2,2,2}*704, {22,4,2,2}*704
4-fold quotients : {22,2,2,2}*352
8-fold quotients : {11,2,2,2}*176
11-fold quotients : {4,4,2,2}*128
22-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
44-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)(17,18)
(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)(45,67)
(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,78)
(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79);;
s1 := ( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)(10,48)
(11,47)(12,57)(13,56)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)(21,59)
(22,58)(23,68)(24,67)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)(32,70)
(33,69)(34,79)(35,78)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,81)
(44,80);;
s2 := (45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)
(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)
(77,88);;
s3 := (89,90);;
s4 := (91,92);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(92)!( 2,11)( 3,10)( 4, 9)( 5, 8)( 6, 7)(13,22)(14,21)(15,20)(16,19)
(17,18)(24,33)(25,32)(26,31)(27,30)(28,29)(35,44)(36,43)(37,42)(38,41)(39,40)
(45,67)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)
(56,78)(57,88)(58,87)(59,86)(60,85)(61,84)(62,83)(63,82)(64,81)(65,80)(66,79);
s1 := Sym(92)!( 1,46)( 2,45)( 3,55)( 4,54)( 5,53)( 6,52)( 7,51)( 8,50)( 9,49)
(10,48)(11,47)(12,57)(13,56)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)
(21,59)(22,58)(23,68)(24,67)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)
(32,70)(33,69)(34,79)(35,78)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)
(43,81)(44,80);
s2 := Sym(92)!(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)
(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)
(76,87)(77,88);
s3 := Sym(92)!(89,90);
s4 := Sym(92)!(91,92);
poly := sub<Sym(92)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope