include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,22,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,22,2,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,19224)
Rank : 5
Schlafli Type : {8,22,2,2}
Number of vertices, edges, etc : 8, 88, 22, 2, 2
Order of s0s1s2s3s4 : 88
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,22,2,2}*704
4-fold quotients : {2,22,2,2}*352
8-fold quotients : {2,11,2,2}*176
11-fold quotients : {8,2,2,2}*128
22-fold quotients : {4,2,2,2}*64
44-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)
(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)
(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)
(66,88);;
s1 := ( 1,45)( 2,55)( 3,54)( 4,53)( 5,52)( 6,51)( 7,50)( 8,49)( 9,48)(10,47)
(11,46)(12,56)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)(21,58)
(22,57)(23,78)(24,88)(25,87)(26,86)(27,85)(28,84)(29,83)(30,82)(31,81)(32,80)
(33,79)(34,67)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)
(44,68);;
s2 := ( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)(17,19)
(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)(45,46)
(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)(69,77)
(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85);;
s3 := (89,90);;
s4 := (91,92);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(92)!(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)
(32,43)(33,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)
(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)
(65,87)(66,88);
s1 := Sym(92)!( 1,45)( 2,55)( 3,54)( 4,53)( 5,52)( 6,51)( 7,50)( 8,49)( 9,48)
(10,47)(11,46)(12,56)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)
(21,58)(22,57)(23,78)(24,88)(25,87)(26,86)(27,85)(28,84)(29,83)(30,82)(31,81)
(32,80)(33,79)(34,67)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)
(43,69)(44,68);
s2 := Sym(92)!( 1, 2)( 3,11)( 4,10)( 5, 9)( 6, 8)(12,13)(14,22)(15,21)(16,20)
(17,19)(23,24)(25,33)(26,32)(27,31)(28,30)(34,35)(36,44)(37,43)(38,42)(39,41)
(45,46)(47,55)(48,54)(49,53)(50,52)(56,57)(58,66)(59,65)(60,64)(61,63)(67,68)
(69,77)(70,76)(71,75)(72,74)(78,79)(80,88)(81,87)(82,86)(83,85);
s3 := Sym(92)!(89,90);
s4 := Sym(92)!(91,92);
poly := sub<Sym(92)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope