include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,22,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,22,2,2}*1408
if this polytope has a name.
Group : SmallGroup(1408,19301)
Rank : 6
Schlafli Type : {2,4,22,2,2}
Number of vertices, edges, etc : 2, 4, 44, 22, 2, 2
Order of s0s1s2s3s4s5 : 44
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,22,2,2}*704
4-fold quotients : {2,2,11,2,2}*352
11-fold quotients : {2,4,2,2,2}*128
22-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(34,45)
(35,46);;
s2 := ( 3,25)( 4,35)( 5,34)( 6,33)( 7,32)( 8,31)( 9,30)(10,29)(11,28)(12,27)
(13,26)(14,36)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)
(24,37);;
s3 := ( 3, 4)( 5,13)( 6,12)( 7,11)( 8,10)(14,15)(16,24)(17,23)(18,22)(19,21)
(25,26)(27,35)(28,34)(29,33)(30,32)(36,37)(38,46)(39,45)(40,44)(41,43);;
s4 := (47,48);;
s5 := (49,50);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(50)!(1,2);
s1 := Sym(50)!(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)
(34,45)(35,46);
s2 := Sym(50)!( 3,25)( 4,35)( 5,34)( 6,33)( 7,32)( 8,31)( 9,30)(10,29)(11,28)
(12,27)(13,26)(14,36)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)
(23,38)(24,37);
s3 := Sym(50)!( 3, 4)( 5,13)( 6,12)( 7,11)( 8,10)(14,15)(16,24)(17,23)(18,22)
(19,21)(25,26)(27,35)(28,34)(29,33)(30,32)(36,37)(38,46)(39,45)(40,44)(41,43);
s4 := Sym(50)!(47,48);
s5 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope