Polytope of Type {5,2,2,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,2,36}*1440
if this polytope has a name.
Group : SmallGroup(1440,1583)
Rank : 5
Schlafli Type : {5,2,2,36}
Number of vertices, edges, etc : 5, 5, 2, 36, 36
Order of s0s1s2s3s4 : 180
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,2,18}*720
   3-fold quotients : {5,2,2,12}*480
   4-fold quotients : {5,2,2,9}*360
   6-fold quotients : {5,2,2,6}*240
   9-fold quotients : {5,2,2,4}*160
   12-fold quotients : {5,2,2,3}*120
   18-fold quotients : {5,2,2,2}*80
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (6,7);;
s3 := ( 9,10)(11,12)(14,17)(15,16)(18,19)(20,21)(22,25)(23,24)(26,27)(28,29)
(30,33)(31,32)(34,35)(36,37)(38,41)(39,40)(42,43);;
s4 := ( 8,14)( 9,11)(10,20)(12,22)(13,16)(15,18)(17,28)(19,30)(21,24)(23,26)
(25,36)(27,38)(29,32)(31,34)(33,42)(35,39)(37,40)(41,43);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(43)!(2,3)(4,5);
s1 := Sym(43)!(1,2)(3,4);
s2 := Sym(43)!(6,7);
s3 := Sym(43)!( 9,10)(11,12)(14,17)(15,16)(18,19)(20,21)(22,25)(23,24)(26,27)
(28,29)(30,33)(31,32)(34,35)(36,37)(38,41)(39,40)(42,43);
s4 := Sym(43)!( 8,14)( 9,11)(10,20)(12,22)(13,16)(15,18)(17,28)(19,30)(21,24)
(23,26)(25,36)(27,38)(29,32)(31,34)(33,42)(35,39)(37,40)(41,43);
poly := sub<Sym(43)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope