Polytope of Type {9,2,10,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,10,4}*1440
if this polytope has a name.
Group : SmallGroup(1440,1593)
Rank : 5
Schlafli Type : {9,2,10,4}
Number of vertices, edges, etc : 9, 9, 10, 20, 4
Order of s0s1s2s3s4 : 180
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {9,2,10,2}*720
   3-fold quotients : {3,2,10,4}*480
   4-fold quotients : {9,2,5,2}*360
   5-fold quotients : {9,2,2,4}*288
   6-fold quotients : {3,2,10,2}*240
   10-fold quotients : {9,2,2,2}*144
   12-fold quotients : {3,2,5,2}*120
   15-fold quotients : {3,2,2,4}*96
   30-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (12,13)(15,16)(17,18)(20,21)(22,23)(24,25)(26,27)(28,29);;
s3 := (10,12)(11,20)(13,17)(14,15)(16,26)(19,24)(21,22)(23,27)(25,28);;
s4 := (10,11)(12,15)(13,16)(14,19)(17,22)(18,23)(20,24)(21,25)(26,28)(27,29);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(29)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(29)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(29)!(12,13)(15,16)(17,18)(20,21)(22,23)(24,25)(26,27)(28,29);
s3 := Sym(29)!(10,12)(11,20)(13,17)(14,15)(16,26)(19,24)(21,22)(23,27)(25,28);
s4 := Sym(29)!(10,11)(12,15)(13,16)(14,19)(17,22)(18,23)(20,24)(21,25)(26,28)
(27,29);
poly := sub<Sym(29)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope