Polytope of Type {5,2,2,9,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,2,9,4}*1440
if this polytope has a name.
Group : SmallGroup(1440,4569)
Rank : 6
Schlafli Type : {5,2,2,9,4}
Number of vertices, edges, etc : 5, 5, 2, 9, 18, 4
Order of s0s1s2s3s4s5 : 90
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {5,2,2,3,4}*480
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (6,7);;
s3 := ( 8, 9)(10,13)(11,12)(14,22)(15,21)(16,23)(17,19)(18,20)(24,30)(25,31)
(26,28)(27,29)(32,38)(33,39)(34,36)(35,37)(40,43)(41,42);;
s4 := ( 8,12)( 9,10)(11,19)(13,15)(14,16)(17,28)(18,29)(20,22)(21,24)(23,25)
(26,36)(27,37)(30,32)(31,33)(34,38)(35,42)(39,40)(41,43);;
s5 := ( 8,22)( 9,14)(10,16)(13,23)(17,27)(19,29)(24,33)(26,35)(28,37)(30,39)
(32,40)(38,43);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s4*s5*s4*s5*s4*s5*s4*s5, s5*s4*s3*s5*s4*s5*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(43)!(2,3)(4,5);
s1 := Sym(43)!(1,2)(3,4);
s2 := Sym(43)!(6,7);
s3 := Sym(43)!( 8, 9)(10,13)(11,12)(14,22)(15,21)(16,23)(17,19)(18,20)(24,30)
(25,31)(26,28)(27,29)(32,38)(33,39)(34,36)(35,37)(40,43)(41,42);
s4 := Sym(43)!( 8,12)( 9,10)(11,19)(13,15)(14,16)(17,28)(18,29)(20,22)(21,24)
(23,25)(26,36)(27,37)(30,32)(31,33)(34,38)(35,42)(39,40)(41,43);
s5 := Sym(43)!( 8,22)( 9,14)(10,16)(13,23)(17,27)(19,29)(24,33)(26,35)(28,37)
(30,39)(32,40)(38,43);
poly := sub<Sym(43)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5*s4*s5*s4*s5, 
s5*s4*s3*s5*s4*s5*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope