include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,4,9,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,4,9,2}*1440
if this polytope has a name.
Group : SmallGroup(1440,4569)
Rank : 6
Schlafli Type : {5,2,4,9,2}
Number of vertices, edges, etc : 5, 5, 4, 18, 9, 2
Order of s0s1s2s3s4s5 : 90
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {5,2,4,3,2}*480
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := ( 7,12)( 8,14)( 9,16)(10,18)(13,23)(15,25)(19,29)(26,35)(28,37)(30,38)
(32,39)(34,40);;
s3 := ( 6, 7)( 8,11)( 9,10)(12,20)(13,19)(14,21)(15,17)(16,18)(22,28)(23,29)
(24,26)(25,27)(30,36)(31,37)(32,34)(33,35)(38,41)(39,40);;
s4 := ( 6,11)( 7, 9)( 8,19)(10,15)(12,16)(13,28)(14,29)(17,24)(18,25)(20,21)
(22,36)(23,37)(26,32)(27,33)(30,34)(31,41)(35,39)(38,40);;
s5 := (42,43);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(43)!(2,3)(4,5);
s1 := Sym(43)!(1,2)(3,4);
s2 := Sym(43)!( 7,12)( 8,14)( 9,16)(10,18)(13,23)(15,25)(19,29)(26,35)(28,37)
(30,38)(32,39)(34,40);
s3 := Sym(43)!( 6, 7)( 8,11)( 9,10)(12,20)(13,19)(14,21)(15,17)(16,18)(22,28)
(23,29)(24,26)(25,27)(30,36)(31,37)(32,34)(33,35)(38,41)(39,40);
s4 := Sym(43)!( 6,11)( 7, 9)( 8,19)(10,15)(12,16)(13,28)(14,29)(17,24)(18,25)
(20,21)(22,36)(23,37)(26,32)(27,33)(30,34)(31,41)(35,39)(38,40);
s5 := Sym(43)!(42,43);
poly := sub<Sym(43)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope