include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,10,2,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,10,2,18}*1440
if this polytope has a name.
Group : SmallGroup(1440,4583)
Rank : 5
Schlafli Type : {2,10,2,18}
Number of vertices, edges, etc : 2, 10, 10, 18, 18
Order of s0s1s2s3s4 : 90
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,5,2,18}*720, {2,10,2,9}*720
3-fold quotients : {2,10,2,6}*480
4-fold quotients : {2,5,2,9}*360
5-fold quotients : {2,2,2,18}*288
6-fold quotients : {2,5,2,6}*240, {2,10,2,3}*240
9-fold quotients : {2,10,2,2}*160
10-fold quotients : {2,2,2,9}*144
12-fold quotients : {2,5,2,3}*120
15-fold quotients : {2,2,2,6}*96
18-fold quotients : {2,5,2,2}*80
30-fold quotients : {2,2,2,3}*48
45-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 6)( 7, 8)( 9,10)(11,12);;
s2 := ( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,12);;
s3 := (15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30);;
s4 := (13,17)(14,15)(16,21)(18,19)(20,25)(22,23)(24,29)(26,27)(28,30);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(30)!(1,2);
s1 := Sym(30)!( 5, 6)( 7, 8)( 9,10)(11,12);
s2 := Sym(30)!( 3, 7)( 4, 5)( 6,11)( 8, 9)(10,12);
s3 := Sym(30)!(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30);
s4 := Sym(30)!(13,17)(14,15)(16,21)(18,19)(20,25)(22,23)(24,29)(26,27)(28,30);
poly := sub<Sym(30)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope